Temperature Dependence of the Microstructure and Mechanical Properties of a Twinning-Induced Plasticity Steel

被引:12
作者
De Barbieri, Flavio [1 ]
Castro Cerda, Felipe [2 ]
Perez-Ipina, Juan [3 ]
Artigas, Alfredo [2 ]
Monsalve, Alberto [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Ingn Met & Mat, Valparaiso 2340000, Chile
[2] Univ Santiago Chile, Dept Ingn Met, Santiago 9160000, Chile
[3] UNComa, CONICET, Grp Mecan Fractura, RA-8300 Neuquen, Argentina
来源
METALS | 2018年 / 8卷 / 04期
关键词
twinning; TWIP steel; stacking fault energy; mechanical properties; work hardening; AUSTENITIC STAINLESS-STEEL; STACKING-FAULT ENERGY; TWIP STEEL; DEFORMATION MICROSTRUCTURES; TRIP/TWIP STEELS; MICROMECHANICS; TRANSFORMATION; BEHAVIOR; ORIGIN;
D O I
10.3390/met8040262
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The objective of the present study is to analyze the microstructure and mechanical properties of a twinning-induced plasticity (TWIP) steel at different temperatures. For this purpose, tensile tests were performed on a Fe-22Mn-0.65C TWIP steel in a temperature range between 25 degrees C and 400 degrees C. The microstructure after deformation was characterized via optical microscopy. It was observed that the microstructure consists of mainly deformation twins at low temperatures, whereas dislocation bands are the predominating feature at high temperatures. The analysis of mechanical data suggests a transition of the deformation mechanism from twinning at low temperatures to dislocation slip at high temperatures. The work-hardening rate and area reduction variation with temperature are discussed and correlated to the decrease of twinning contribution to the deformation mechanism. The role of other processes, such as dynamic strain aging and precipitation hardening, are discussed. A thermodynamic-based description for the dependence of yield stress with temperature was developed, suggesting two acting work-hardening mechanisms.
引用
收藏
页数:11
相关论文
共 21 条
[1]   High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships [J].
Bouaziz, O. ;
Allain, S. ;
Scott, C. P. ;
Cugy, P. ;
Barbier, D. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2011, 15 (04) :141-168
[2]   DEFORMATION TWINNING [J].
CHRISTIAN, JW ;
MAHAJAN, S .
PROGRESS IN MATERIALS SCIENCE, 1995, 39 (1-2) :1-157
[3]   Thermodynamic modeling of the stacking fault energy of austenitic steels [J].
Curtze, S. ;
Kuokkala, V. -T. ;
Oikari, A. ;
Talonen, J. ;
Hanninen, H. .
ACTA MATERIALIA, 2011, 59 (03) :1068-1076
[4]   Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate [J].
Curtze, S. ;
Kuokkala, V. -T. .
ACTA MATERIALIA, 2010, 58 (15) :5129-5141
[5]   MECHANISM OF WORK-HARDENING IN HADFIELD MANGANESE STEEL [J].
DASTUR, YN ;
LESLIE, WC .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1981, 12 (05) :749-759
[6]   State-of-the-knowledge on TWIP steel [J].
De Cooman, B. C. ;
Kwon, O. ;
Chin, K. -G. .
MATERIALS SCIENCE AND TECHNOLOGY, 2012, 28 (05) :513-527
[7]  
De Cooman BC, 2009, MICROSTRUCTURE AND TEXTURE IN STEELS AND OTHER MATERIALS, P165
[8]   Twinning-induced plasticity (TWIP) steels [J].
De Cooman, Bruno C. ;
Estrin, Yuri ;
Kim, Sung Kyu .
ACTA MATERIALIA, 2018, 142 :283-362
[9]   Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel [J].
Dumay, A. ;
Chateau, J. -P. ;
Allain, S. ;
Migot, S. ;
Bouaziz, O. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 483-84 :184-187
[10]   Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes [J].
Frommeyer, G ;
Brüx, U ;
Neumann, P .
ISIJ INTERNATIONAL, 2003, 43 (03) :438-446