TAMED EXHAUSTION FUNCTIONS AND SCHWARZ TYPE LEMMAS FOR ALMOST HERMITIAN MANIFOLDS

被引:2
作者
Yu, Weike [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Jiangsu, Peoples R China
关键词
Almost Hermitian manifold; canonical connection; Hessian comparison theorem; tamed exhaustion function; Schwarz lemma; MAPPINGS; THEOREMS; YAU;
D O I
10.4134/BKMS.b210799
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a special exhaustion function on almost Hermitian manifolds and establish the existence result by using the Hessian comparison theorem. From the viewpoint of the exhaustion function, we establish a related Schwarz type lemma for almost holomorphic maps between two almost Hermitian manifolds. As corollaries, we deduce several versions of Schwarz and Liouville type theorems for almost holomorphic maps.
引用
收藏
页码:1423 / 1438
页数:16
相关论文
共 28 条
  • [1] An extension of Schwarz's lemma
    Ahlfors, Lars V.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) : 359 - 364
  • [2] Schwarz Lemma: The Case of Equality and an Extension
    Chen, Haojie
    Nie, Xiaolan
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [3] CHEN Z, 1979, SCI SINICA, V22, P1238
  • [4] Chern S. -S., 1966, ENTIRE FUNCTIONS REL, P157
  • [5] Schwarz-type lemmas for generalized holomorphic maps between pseudo-Hermitian manifolds and Hermitian manifolds
    Chong, Tian
    Dong, Yuxin
    Ren, Yibin
    Yu, Weike
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (01) : 26 - 41
  • [6] Schwarz Type Lemmas for Pseudo-Hermitian Manifolds
    Dong, Yuxin
    Ren, Yibin
    Yu, Weike
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (03) : 3161 - 3195
  • [7] EHRESMANN C, 1951, CR HEBD ACAD SCI, V232, P1281
  • [8] Gauduchon P, 1997, B UNIONE MAT ITAL, V11B, P257
  • [9] Goldberg S I., 1975, J Differ Geom, V10, P619, DOI [10.4310/jdg/1214433165, DOI 10.4310/JDG/1214433165]
  • [10] HARMONIC QUASICONFORMAL MAPPINGS OF RIEMANNIAN MANIFOLDS
    GOLDBERG, SI
    ISHIHARA, T
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1976, 98 (01) : 225 - 240