Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis

被引:125
作者
van der Burgh, Hannelore K. [1 ]
Schmidt, Ruben [1 ]
Westeneng, Henk-Jan [1 ]
de Reus, Marcel A. [2 ]
van den Berg, Leonard H. [1 ]
van den Heuvel, Martijn P. [2 ]
机构
[1] Univ Med Ctr Utrecht, Dept Neurol, Brain Ctr Rudolf Magnus, Heidelberglaan 100,POB 85500, NL-3508 GA Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Dept Psychiat, Brain Ctr Rudolf Magnus, Heidelberglaan 100,POB 85500, NL-3508 GA Utrecht, Netherlands
关键词
Deep learning; Neural network; Amyotrophic lateral sclerosis; White matter connectivity; Survival; Prediction; HUMAN CEREBRAL-CORTEX; CORTICAL THICKNESS; ALSFRS-R; HEXANUCLEOTIDE REPEAT; DISEASE PROGRESSION; NEURAL-NETWORKS; BRAIN; PROGNOSIS; SUSCEPTIBILITY; HETEROGENEITY;
D O I
10.1016/j.nicl.2016.10.008
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease, with large variation in survival between patients. Currently, it remains rather difficult to predict survival based on clinical parameters alone. Here, we set out to use clinical characteristics in combination with MRI data to predict survival of ALS patients using deep learning, a machine learning technique highly effective in a broad range of big-data analyses. A group of 135 ALS patients was included from whom high-resolution diffusion-weighted and T1-weighted images were acquired at the first visit to the outpatient clinic. Next, each of the patients was monitored carefully and survival time to death was recorded. Patients were labeled as short, medium or long survivors, based on their recorded time to death as measured from the time of disease onset. In the deep learning procedure, the total group of 135 patients was split into a training set for deep learning (n - 83 patients), a validation set (n - 20) and an independent evaluation set (n = 32) to evaluate the performance of the obtained deep learning networks. Deep learning based on clinical characteristics predicted survival category correctly in 68.8% of the cases. Deep learning based on MRI predicted 62.5% correctly using structural connectivity and 62.5% using brain morphology data. Notably, when we combined the three sources of information, deep learning prediction accuracy increased to 84.4%. Taken together, our findings show the added value of MRI with respect to predicting survival in ALS, demonstrating the advantage of deep learning in disease prognostication. (C) 2016 The Authors. Published by Elsevier Inc.
引用
收藏
页码:361 / 369
页数:9
相关论文
共 89 条
[21]  
Cristianini N., 2000, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
[22]  
Crowther PS., 2005, KNOWLEDGE BASED IN 4
[23]  
Dai J, 2015, IEEE COMPUT SOC CONF
[24]  
Dean J., 2012, ADV NEURAL INFORM PR, V25, P1223, DOI DOI 10.5555/2999134.2999271
[25]   Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS [J].
DeJesus-Hernandez, Mariely ;
Mackenzie, Ian R. ;
Boeve, Bradley F. ;
Boxer, Adam L. ;
Baker, Matt ;
Rutherford, Nicola J. ;
Nicholson, Alexandra M. ;
Finch, NiCole A. ;
Flynn, Heather ;
Adamson, Jennifer ;
Kouri, Naomi ;
Wojtas, Aleksandra ;
Sengdy, Pheth ;
Hsiung, Ging-Yuek R. ;
Karydas, Anna ;
Seeley, William W. ;
Josephs, Keith A. ;
Coppola, Giovanni ;
Geschwind, Daniel H. ;
Wszolek, Zbigniew K. ;
Feldman, Howard ;
Knopman, David S. ;
Petersen, Ronald C. ;
Miller, Bruce L. ;
Dickson, Dennis W. ;
Boylan, Kevin B. ;
Graff-Radford, Neill R. ;
Rademakers, Rosa .
NEURON, 2011, 72 (02) :245-256
[26]   Prognosis in amyotrophic lateral sclerosis - A population-based study [J].
del Aguila, MA ;
Longstreth, WT ;
McGuire, V ;
Koepsell, TD ;
van Belle, G .
NEUROLOGY, 2003, 60 (05) :813-819
[27]   An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest [J].
Desikan, Rahul S. ;
Segonne, Florent ;
Fischl, Bruce ;
Quinn, Brian T. ;
Dickerson, Bradford C. ;
Blacker, Deborah ;
Buckner, Randy L. ;
Dale, Anders M. ;
Maguire, R. Paul ;
Hyman, Bradley T. ;
Albert, Marilyn S. ;
Killiany, Ronald J. .
NEUROIMAGE, 2006, 31 (03) :968-980
[28]  
Duan KB, 2003, LECT NOTES COMPUT SC, V2709, P125
[29]   Predicting prognosis in amyotrophic lateral sclerosis: a simple algorithm [J].
Elamin, Marwa ;
Bede, Peter ;
Montuschi, Anna ;
Pender, Niall ;
Chio, Adriano ;
Hardiman, Orla .
JOURNAL OF NEUROLOGY, 2015, 262 (06) :1447-1454
[30]   Multiple Kernel Learning Captures a Systems-Level Functional Connectivity Biomarker Signature in Amyotrophic Lateral Sclerosis [J].
Fekete, Tomer ;
Zach, Neta ;
Mujica-Parodi, Lilianne R. ;
Turner, Martin R. .
PLOS ONE, 2013, 8 (12)