A variable step-size selection method for implicit integration schemes

被引:0
|
作者
Holsapple, Raymond [1 ]
Iyer, Ram [1 ]
Doman, David [2 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
[2] US Air Force, Res Lab, Wright Patterson AFB, OH 45433 USA
关键词
D O I
10.1109/ACC.2006.1657179
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Implicit integration schemes, such as Runge-Kutta methods, are widely used in mathematics and engineering to numerically solve ordinary differential equations. Every integration method requires one to choose a step-size, h, for the integration. If h is too large or too small the efficiency of an implicit scheme is relatively low. As every implicit integration scheme has a global error inherent to the scheme, we choose the total number of computations in order to achieve a prescribed global error as a measure of efficiency of the integration scheme. In this paper, we propose the idea of choosing h by minimizing an efficiency function for general Runge-Kutta integration routines. We show the efficacy of this approach on some standard problems found in the literature.
引用
收藏
页码:3013 / +
页数:2
相关论文
共 50 条
  • [1] Variable step-size selection methods for implicit integration schemes for odes
    Holsapple, Raymond
    Iyer, Ram
    Doman, David
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2007, 4 (02) : 210 - 240
  • [2] A Novel Variable Step-Size Algorithm for Implicit Integration
    Zou, Jianxiao
    Zhou, Cuiyun
    Zheng, Gang
    ADVANCES IN CIVIL ENGINEERING, PTS 1-6, 2011, 255-260 : 2159 - 2163
  • [3] The Selection of the Step-Size Factor in the Variable Step-Size CMA
    Liu, Jia
    Zhao, Baofeng
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2011, 7002 : 288 - +
  • [4] Variable order and variable step-size integration method for transient analysis programs
    Kato, Toshiji
    Ikeuchi, Kenji
    IEEE Transactions on Power Systems, 1991, 6 (02) : 206 - 213
  • [5] VARIABLE ORDER AND VARIABLE STEP-SIZE INTEGRATION METHOD FOR TRANSIENT ANALYSIS PROGRAMS
    KATO, T
    IKEUCHI, K
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1991, 6 (01) : 206 - 213
  • [6] Explicit variable step-size and time-reversible integration
    Holder, T
    Leimkuhler, B
    Reich, S
    APPLIED NUMERICAL MATHEMATICS, 2001, 39 (3-4) : 367 - 377
  • [7] Linearly implicit variable step-size BDF schemes with Fourier pseudospectral approximation for incompressible Navier-Stokes equations
    Wang, Wansheng
    Wang, Zheng
    Mao, Mengli
    APPLIED NUMERICAL MATHEMATICS, 2022, 172 : 393 - 412
  • [8] A CLASS OF DIFFERENTIAL-EQUATIONS FOR TESTING VARIABLE STEP-SIZE INTEGRATION
    WEBSTER, MB
    BAKER, PW
    INFORMATION PROCESSING LETTERS, 1986, 22 (02) : 103 - 107
  • [9] Richardson estimator with variable step-size
    Aïd, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (09): : 833 - 837
  • [10] Research of the step-size factor in adaptive variable step-size blind equalization algorithm
    Zhang, LY
    Cheng, HQ
    Liu, T
    Wang, HK
    ICEMI 2005: Conference Proceedings of the Seventh International Conference on Electronic Measurement & Instruments, Vol 3, 2005, : 667 - 670