Uniqueness of (dilatonic) charged black holes and black p-branes in higher dimensions -: art. no. 044010

被引:109
作者
Gibbons, GW
Ida, D
Shiromizu, T
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England
[2] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan
[3] Waseda Univ, Adv Res Inst Sci & Engn, Tokyo 1698555, Japan
来源
PHYSICAL REVIEW D | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevD.66.044010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We prove the uniqueness of higher dimensional (dilatonic) charged black holes in static and asymptotically flat spacetimes for an arbitrary vector-dilaton coupling constant. An application to the uniqueness of a wide class of black p-branes is also given.
引用
收藏
页数:6
相关论文
共 24 条
[1]   Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces [J].
Bohm, C .
INVENTIONES MATHEMATICAE, 1998, 134 (01) :145-176
[2]   NONEXISTENCE OF MULTIPLE BLACK-HOLES IN ASYMPTOTICALLY EUCLIDEAN STATIC VACUUM SPACE-TIME [J].
BUNTING, GL ;
MASOODULALAM, AKM .
GENERAL RELATIVITY AND GRAVITATION, 1987, 19 (02) :147-154
[3]   ALL ELECTROVACUUM MAJUMDAR-PAPAPETROU SPACETIMES WITH NONSINGULAR BLACK-HOLES [J].
CHRUSCIEL, PT ;
NADIRASHVILI, NS .
CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (03) :L17-L23
[4]  
GIBBONS G, GRQC0203004
[5]   HIGHER-DIMENSIONAL RESOLUTION OF DILATONIC BLACK-HOLE SINGULARITIES [J].
GIBBONS, GW ;
HOROWITZ, GT ;
TOWNSEND, PK .
CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (02) :297-317
[6]   BLACK-HOLES AND MEMBRANES IN HIGHER-DIMENSIONAL THEORIES WITH DILATON FIELDS [J].
GIBBONS, GW ;
MAEDA, K .
NUCLEAR PHYSICS B, 1988, 298 (04) :741-775
[7]   Uniqueness and nonuniqueness of static black holes in higher dimensions [J].
Gibbons, GW ;
Ida, D ;
Shiromizu, T .
PHYSICAL REVIEW LETTERS, 2002, 89 (04) :1-041101
[8]   ANTI-GRAVITATING BLACK-HOLE SOLITONS WITH SCALAR HAIR IN N=4 SUPERGRAVITY [J].
GIBBONS, GW .
NUCLEAR PHYSICS B, 1982, 207 (02) :337-349
[9]   On the uniqueness of the Papapetrou-Majumdar metric [J].
Heusler, M .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (07) :L129-L134
[10]   A rigidity theorem for Ricci flat metrics [J].
Hwang, SS .
GEOMETRIAE DEDICATA, 1998, 71 (01) :5-17