Quantum field theory on non-commutative space-times and the persistence of ultraviolet divergences

被引:146
作者
Chaichian, M [1 ]
Demichev, A
Presnajder, P
机构
[1] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland
[2] Helsinki Inst Phys, FIN-00014 Helsinki, Finland
[3] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow 119899, Russia
[4] Comenius Univ, Dept Theoret Phys, SK-84215 Bratislava, Slovakia
基金
芬兰科学院;
关键词
quantum field theory; ultraviolet divergences; regularization; non-commutative space-times;
D O I
10.1016/S0550-3213(99)00664-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study properties of a scalar quantum field theory on two-dimensional non-commutative space-times. Contrary to the common belief that non-commutativity of space-time would be a key to remove the ultraviolet divergences, we show that field theories on a non-commutative plane with the most natural Heisenberg-like commutation relations among coordinates or even on a non-commutative quantum plane with E-q(2) symmetry have ultraviolet divergences, while the theory on a non-commutative cylinder is ultraviolet finite. Thus, ultraviolet behavior of a field theory on non-commutative spaces is sensitive to the topology of the space-time, namely to its compactness. We present general arguments for the case of higher space-time dimensions and as well discuss the symmetry transformations of physical states on non-commutative space-times. (C) 2000 Elsevier Science B.V. Ail rights reserved.
引用
收藏
页码:360 / 390
页数:31
相关论文
共 25 条
  • [1] WIGNER FUNCTION AND OTHER DISTRIBUTION-FUNCTIONS IN MOCK PHASE SPACES
    BALAZS, NL
    JENNINGS, BK
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 104 (06): : 347 - 391
  • [2] Barut A., 1977, THEORY GROUP REPRESE
  • [3] GENERAL CONCEPT OF QUANTIZATION
    BEREZIN, FA
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 40 (02) : 153 - 174
  • [4] Free q-Schrodinger equation from homogeneous spaces of the 2-dim Euclidean quantum group
    Bonechi, F
    Ciccoli, N
    Giachetti, R
    Sorace, E
    Tarlini, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (01) : 161 - 176
  • [5] CHAICHIAN M, 1996, INTRO QUANTUM GROUPS
  • [6] GRAND UNIFICATION IN NONCOMMUTATIVE GEOMETRY
    CHAMSEDDINE, AH
    FELDER, G
    FROHLICH, J
    [J]. NUCLEAR PHYSICS B, 1993, 395 (03) : 672 - 698
  • [7] Connes A., 1994, NONCOMMUTATIVE GEOME
  • [8] CONNES A, 1990, NUCL PHYS B, V11, P19
  • [9] SPACETIME QUANTIZATION INDUCED BY CLASSICAL GRAVITY
    DOPLICHER, S
    FREDENHAGEN, K
    ROBERTS, JE
    [J]. PHYSICS LETTERS B, 1994, 331 (1-2) : 39 - 44
  • [10] THE QUANTUM STRUCTURE OF SPACETIME AT THE PLANCK-SCALE AND QUANTUM-FIELDS
    DOPLICHER, S
    FREDENHAGEN, K
    ROBERTS, JE
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) : 187 - 220