Extracellular fibrillar structure of latent TGF beta binding protein-1: Role in TGF beta-dependent endothelial-mesenchymal transformation during endocardial cushion tissue formation in mouse embryonic heart

被引:101
作者
Nakajima, Y [1 ]
Miyazono, K [1 ]
Kato, M [1 ]
Takase, M [1 ]
Yamagishi, T [1 ]
Nakamura, H [1 ]
机构
[1] JAPANESE FDN CANC RES, INST CANC, DEPT BIOCHEM, TOSHIMA KU, TOKYO 170, JAPAN
关键词
D O I
10.1083/jcb.136.1.193
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Transforming growth factor-beta (TGF beta) is a dimeric peptide growth factor which regulates cellular differentiation and proliferation during development. Most cells secrete TGF beta as a large latent TGF beta complex containing mature TGF beta, latency associated peptide, and latent TGF beta-binding protein (LTBP)-1. The biological role of LTBP-1 in development remains unclear. Using a polyclonal antiserum specific for LTBP-1 (Ab39) and three-dimensional collagen gel culture assay of embryonic heart, we examined the tissue distribution of LTBP-1 and its functional role during the formation of endocardial cushion tissue in the mouse embryonic heart. Mature TGF beta protein was required at the onset of the endothelial-mesenchymal transformation to initiate endocardial cushion tissue formation. Double antibody staining showed that LTBP-1 colocalized with TGF beta 1 as an extracellular fibrillar structure surrounding the endocardial cushion mesenchymal cells. Immunogold electronmicroscopy showed that LTBP-1 localized to 40-100 nm extracellular fibrillar structure and 5-10-nm microfibrils. The anti-LTBP-1 antiserum (Ab39) inhibited the endothelial-mesenchymal transformation in atrio-ventricular endocardial cells cocultured with associated myocardium on a three-dimensional collagen gel lattice. This inhibitory effect was reversed by administration of mature TGF beta proteins in culture. These results suggest that LTBP-1 exists as an extracellular fibrillar structure and plays a role in the storage of TGF beta as a large latent TGF beta complex.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 63 条