GROMOV-WITTEN/PAIRS CORRESPONDENCE FOR THE QUINTIC 3-FOLD

被引:39
作者
Pandharipande, R. [1 ]
Pixton, A. [2 ,3 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Zurich, Switzerland
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
基金
瑞士国家科学基金会;
关键词
DONALDSON-THOMAS THEORY; QUANTUM COHOMOLOGY; HILBERT SCHEME; TORIC; 3-FOLDS; STABLE PAIRS; INVARIANTS; CURVES; A(N)-RESOLUTIONS; DEGENERATION; DESCENDANTS;
D O I
10.1090/jams/858
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the Gromov-Witten/Pairs (GW/P) descendent correspondence for toric 3-folds and degeneration arguments to establish the GW/P correspondence for several compact Calabi-Yau (CY) 3-folds (including all CY complete intersections in products of projective spaces). A crucial aspect of the proof is the study of the GW/P correspondence for descendents in relative geometries. Projective bundles over surfaces relative to a section play a special role. The GW/P correspondence for Calabi-Yau complete intersections provides a structure result for the Gromov-Witten invariants in a fixed curve class. After a change of variables, the Gromov-Witten series is a rational function in the variable -q=eiu invariant under q ↔ q-1. © 2016 American Mathematical Society.
引用
收藏
页码:389 / 449
页数:61
相关论文
共 40 条
[1]   The topological vertex [J].
Aganagic, M ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) :425-478
[2]   The intrinsic normal cone [J].
Behrend, K ;
Fantechi, B .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :45-88
[3]   Gromov-Witten invariants in algebraic geometry [J].
Behrend, K .
INVENTIONES MATHEMATICAE, 1997, 127 (03) :601-617
[4]   HALL ALGEBRAS AND CURVE-COUNTING INVARIANTS [J].
Bridgeland, Tom .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (04) :969-998
[5]  
Bryan J, 2008, J AM MATH SOC, V21, P101
[6]  
Gopakumar R., M theory and topological strings. 1
[7]   Localization of virtual classes [J].
Graber, T ;
Pandharipande, R .
INVENTIONES MATHEMATICAE, 1999, 135 (02) :487-518
[8]  
Gross M, 2013, J AM MATH SOC, V26, P451
[9]  
Ionel E.-N., The Gopakumar-Vafa Formula For Symplectic Manifolds
[10]   Relative Gromov-Witten invariants [J].
Ionel, EN ;
Parker, TH .
ANNALS OF MATHEMATICS, 2003, 157 (01) :45-96