Influence of wave-front sampling in adaptive optics retinal imaging

被引:5
作者
Laslandes, Marie [1 ]
Salas, Matthias [1 ]
Hitzenberger, Christoph K. [1 ]
Pircher, Michael [1 ]
机构
[1] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Waehringer Guertel 18-20, A-1090 Vienna, Austria
来源
BIOMEDICAL OPTICS EXPRESS | 2017年 / 8卷 / 02期
基金
奥地利科学基金会;
关键词
SCANNING LASER OPHTHALMOSCOPE; HUMAN EYE; COHERENCE TOMOGRAPHY; IN-VIVO; HIGH-RESOLUTION; SENSOR; ABERRATIONS; SYSTEM; PHOTORECEPTORS; QUALITY;
D O I
10.1364/BOE.8.001083
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A wide range of sampling densities of the wave-front has been used in retinal adaptive optics (AO) instruments, compared to the number of corrector elements. We developed a model in order to characterize the link between number of actuators, number of wave-front sampling points and AO correction performance. Based on available data from aberration measurements in the human eye, 1000 wave-fronts were generated for the simulations. The AO correction performance in the presence of these representative aberrations was simulated for different deformable mirror and Shack Hartmann wave-front sensor combinations. Predictions of the model were experimentally tested through in vivo measurements in 10 eyes including retinal imaging with an AO scanning laser ophthalmoscope. According to our study, a ratio between wavefront sampling points and actuator elements of 2 is sufficient to achieve high resolution in vivo images of photoreceptors. (C) 2017 Optical Society of America
引用
收藏
页码:1083 / 1100
页数:18
相关论文
共 43 条
  • [1] [Anonymous], 2012, MATRIX COMPUTATIONS
  • [2] Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope
    Burns, Stephen A.
    Tumbar, Remy
    Elsner, Ann E.
    Ferguson, Daniel
    Hammer, Daniel X.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (05) : 1313 - 1326
  • [3] Statistical description of wave-front aberration in the human eye
    Cagigal, MP
    Canales, VF
    Castejón-Mochón, JF
    Prieto, PM
    López-Gil, N
    Artal, P
    [J]. OPTICS LETTERS, 2002, 27 (01) : 37 - 39
  • [4] HUMAN PHOTORECEPTOR TOPOGRAPHY
    CURCIO, CA
    SLOAN, KR
    KALINA, RE
    HENDRICKSON, AE
    [J]. JOURNAL OF COMPARATIVE NEUROLOGY, 1990, 292 (04) : 497 - 523
  • [5] Benefit of higher closed-loop bandwidths in ocular adaptive optics
    Diaz-Santana, L
    Torti, C
    Munro, I
    Gasson, P
    Dainty, C
    [J]. OPTICS EXPRESS, 2003, 11 (20): : 2597 - 2605
  • [6] Wavefront sensor and wavefront corrector matching in adaptive optics
    Dubra, Alfredo
    [J]. OPTICS EXPRESS, 2007, 15 (06) : 2762 - 2769
  • [7] Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope
    Dubra, Alfredo
    Sulai, Yusufu
    Norris, Jennifer L.
    Cooper, Robert F.
    Dubis, Adam M.
    Williams, David R.
    Carroll, Joseph
    [J]. BIOMEDICAL OPTICS EXPRESS, 2011, 2 (07): : 1864 - 1876
  • [8] Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo
    Felberer, Franz
    Kroisamer, Julia-Sophie
    Baumann, Bernhard
    Zotter, Stefan
    Schmidt-Erfurth, Ursula
    Hitzenberger, Christoph K.
    Pircher, Michael
    [J]. BIOMEDICAL OPTICS EXPRESS, 2014, 5 (02): : 439 - 456
  • [9] Lens based adaptive optics scanning laser ophthalmoscope
    Felberer, Franz
    Kroisamer, Julia-Sophie
    Hitzenberger, Christoph K.
    Pircher, Michael
    [J]. OPTICS EXPRESS, 2012, 20 (16): : 17297 - 17310
  • [10] Geary J.M., 1995, Introduction to wavefront sensors