Finite element approximation of a phase field model for void electromigration

被引:72
作者
Barrett, JW
Nürnberg, R
Styles, V
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Sussex, Ctr Math Anal & Its Applicat, Brighton BN1 9QH, E Sussex, England
关键词
void electromigration; surface diffusion; phase field model; diffuse interface model; degenerate Cahn-Hilliard equation; fourth order degenerate parabolic system; finite elements; convergence analysis;
D O I
10.1137/S0036142902413421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a fully practical finite element approximation of the nonlinear degenerate parabolic system gammapartial derivativeu/partial derivativet - del.(b(mu) del[w+alphaphi]) = 0, w = -gammaDeltau+gamma(-1)Psi'(u), del.(c(u) delphi) =0 subject to an initial condition u(0)(.) is an element of[-1, 1] on u and flux boundary conditions on all three equations. Here gamma is an element ofR(>0), alpha is an element ofR(greater than or equal to0), Psi is a nonsmooth double well potential, and c(u) := 1+u, b(u) := 1-u(2) are degenerate coefficients. The degeneracy in b restricts u(.,.) is an element of[-1, 1]. The above, in the limit gamma --> 0, models the evolution of voids by surface diffusion in an electrically conducting solid. In addition to showing stability bounds for our approximation, we prove convergence, and hence existence of a solution to this nonlinear degenerate parabolic system in two space dimensions. Furthermore, an iterative scheme for solving the resulting nonlinear discrete system is introduced and analyzed. Finally, some numerical experiments are presented.
引用
收藏
页码:738 / 772
页数:35
相关论文
共 29 条
[1]   Finite element approximation of a degenerate Allen-Cahn/Cahn-Hilliard system [J].
Barrett, JW ;
Blowey, JF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1598-1624
[2]   Convergence of a finite-element approximation of surfactant spreading on a thin film in the presence of van der Waals forces [J].
Barrett, JW ;
Nürnberg, R .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (02) :323-363
[3]   Finite element approximation of a sixth order nonlinear degenerate parabolic equation [J].
Barrett, JW ;
Langdon, S ;
Nürnberg, R .
NUMERISCHE MATHEMATIK, 2004, 96 (03) :401-434
[4]   Finite element approximation of surfactant spreading on a thin film [J].
Barrett, JW ;
Garcke, H ;
Nurnberg, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (04) :1427-1464
[5]   Finite element approximation of a fourth order nonlinear degenerate parabolic equation [J].
Barrett, JW ;
Blowey, JF ;
Garcke, H .
NUMERISCHE MATHEMATIK, 1998, 80 (04) :525-556
[6]   Finite element approximation of the Cahn-Hilliard equation with degenerate mobility [J].
Barrett, JW ;
Blowey, JF ;
Garcke, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :286-318
[7]   On fully practical finite element approximations of degenerate Cahn-Hilliard systems [J].
Barrett, JW ;
Blowey, JF ;
Garcke, H .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04) :713-748
[8]   Diffuse interface model for electromigration and stress voiding [J].
Bhate, DN ;
Kumar, A ;
Bower, AF .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (04) :1712-1721
[9]  
Bower AF, 1995, MATER RES SOC SYMP P, V391, P177, DOI 10.1557/PROC-391-177
[10]  
Cahn J. M., 1996, Euro. J. Appl. Math., V7, P287, DOI DOI 10.1017/S0956792500002369