Discretization of Stationary Solutions of Stochastic Systems Driven by Fractional Brownian Motion

被引:39
作者
Garrido-Atienza, Maria J. [1 ]
Kloeden, Peter E. [2 ]
Neuenkirch, Andreas [2 ]
机构
[1] Univ Seville, Dpto Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
[2] Univ Frankfurt, Inst Math, D-60325 Frankfurt, Germany
关键词
Fractional Brownian motion; Random dynamical system; Random attractor; One-sided dissipative Lipschitz condition; Implicit Euler scheme; DIFFERENTIAL-EQUATIONS DRIVEN; APPROXIMATION; CONVERGENCE;
D O I
10.1007/s00245-008-9062-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the behavior of dissipative systems with additive fractional noise of any Hurst parameter. Under a one-sided dissipative Lipschitz condition on the drift the continuous stochastic system is shown to have a unique stationary solution, which pathwise attracts all other solutions. The same holds for the discretized stochastic system, if the drift-implicit Euler method is used for the discretization. Moreover, the unique stationary solution of the drift-implicit Euler scheme converges to the unique stationary solution of the original system as the stepsize of the discretization decreases.
引用
收藏
页码:151 / 172
页数:22
相关论文
共 14 条
[1]  
[Anonymous], 1996, Dynamical systems and numerical analysis
[2]  
Arnold L., 1997, RANDOM DYNAMICAL SYS
[3]   The pathwise numerical approximation of stationary solutions of semilinear stochastic evolution equations [J].
Caraballo, T. ;
Kloeden, P. E. .
APPLIED MATHEMATICS AND OPTIMIZATION, 2006, 54 (03) :401-415
[4]   Random attractors [J].
Crauel H. ;
Debussche A. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1997, 9 (2) :307-341
[5]   Random point attractors versus random set attractors [J].
Crauel, H .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 :413-427
[6]  
Hüsler J, 2003, ANN APPL PROBAB, V13, P1615
[7]   Towards a theory of random numerical dynamics [J].
Kloeden, PE ;
Keller, H ;
Schmalfuss, B .
STOCHASTIC DYNAMICS, 1999, :259-282
[8]   Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion [J].
Maslowski, B ;
Schmalfuss, B .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, 22 (06) :1577-1607
[9]  
MISHURA Y, 2008, RATE CONVERGENCE EUL
[10]   Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion [J].
Neuenkirch, Andreas ;
Nourdin, Ivan .
JOURNAL OF THEORETICAL PROBABILITY, 2007, 20 (04) :871-899