Surface speciation of calcite observed in situ by high-resolution X-ray reflectivity

被引:236
|
作者
Fenter, P [1 ]
Geissbühler, P
DiMasi, E
Srajer, G
Sorensen, LB
Sturchio, NC
机构
[1] Argonne Natl Lab, Div Environm Res, Argonne, IL 60439 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Brookhaven Natl Lab, Div Phys, Upton, NY 11973 USA
[4] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
关键词
D O I
10.1016/S0016-7037(99)00403-2
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
High-resolution, in situ X-ray reflectivity measurements were made of the calcite (104)-water interface in calcite-saturated aqueous solutions at pH values ranging from 6.8 to 12.1 and low P-CO2. The X-ray reflectivity data, taken over a momentum transfer range of 6 Angstrom(-1), indicate that the calcite surface does not vary significantly over this range of experimental conditions. From an analysis of the data at pH 8.3, the best-fit reflectivity model requires the presence of 1.0 +/- 0.4 monolayer of a hydroxyl species (OH or OH2) at 2.50 +/- 0.12 Angstrom above the surface Ca ions and involves rotations of the surface carbonate groups toward the (104) plane. The X-ray reflectivity data for pH 6.8 and 12.1 can be explained without invoking changes other than protonation reactions in the surface speciation of terrace areas. This is consistent with scanning force microscopy studies of calcite growth and dissolution near equilibrium, which show that attachment and detachment of Ca and CO3 ions occurs primarily at step-edge kink sites. These results demonstrate how high-resolution X-ray reflectivity can be used for direct, in situ measurement of mineral surface structure, to provide strong constraints on chemical speciation and reactivity at the mineral-fluid interface. Copyright (C) 2000 Elsevier Science Ltd.
引用
收藏
页码:1221 / 1228
页数:8
相关论文
共 50 条
  • [1] High-reflectivity high-resolution X-ray crystal optics with diamonds
    Shvyd'ko, Yuri V.
    Stoupin, Stanislav
    Cunsolo, Alessandro
    Said, Ayman H.
    Huang, Xianrong
    NATURE PHYSICS, 2010, 6 (03) : 196 - 199
  • [2] High-reflectivity high-resolution X-ray crystal optics with diamonds
    Shvydko Y.V.
    Stoupin S.
    Cunsolo A.
    Said A.H.
    Huang X.
    Nature Physics, 2010, 6 (3) : 196 - 199
  • [3] X-RAY IMAGING High-resolution surface structures
    Mancuso, Adrian P.
    Williams, Garth J.
    NATURE PHOTONICS, 2012, 6 (09) : 574 - 575
  • [4] In situ high-resolution X-ray photoelectron spectroscopy - Fundamental insights in surface reactions
    Papp, Christian
    Steinrueck, Hans-Peter
    SURFACE SCIENCE REPORTS, 2013, 68 (3-4) : 446 - 487
  • [5] Cation sorption on the muscovite (001) surface in chloride solutions using high-resolution X-ray reflectivity
    Schlegel, Michel L.
    Nagy, Kathryn. L.
    Fenter, Paul
    Cheng, Likwan
    Sturchio, Nell C.
    Jacobsen, Steven D.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2006, 70 (14) : 3549 - 3565
  • [6] Structure of the fluorapatite (100)-water interface by high-resolution X-ray reflectivity
    Park, CY
    Fenter, P
    Zhang, Z
    Cheng, LW
    Sturchio, NC
    AMERICAN MINERALOGIST, 2004, 89 (11-12) : 1647 - 1654
  • [7] High-resolution X-ray diffraction analysis and reflectivity of epitaxial thin layers
    Baulès, P
    Casanove, MJ
    Roucau, C
    Ousset, JC
    Bobo, JF
    Snoeck, E
    Magnoux, D
    Gatel, C
    JOURNAL DE PHYSIQUE IV, 2002, 12 (PR6): : 247 - 253
  • [8] High-resolution residual layer thickness metrology using X-ray reflectivity
    Lee, HJ
    Soles, CL
    Ro, HW
    Hines, DR
    Jones, RL
    Lin, EK
    Wu, WL
    EMERGING LITHOGRAPHIC TECHNOLOGIES IX, PTS 1 AND 2, 2005, 5751 : 1203 - 1210
  • [9] On the use of CCD area detectors for high-resolution specular X-ray reflectivity
    Fenter, P.
    Catalano, J. G.
    Park, C.
    Zhang, Z.
    JOURNAL OF SYNCHROTRON RADIATION, 2006, 13 : 293 - 303
  • [10] Simulation of the stepped surface of a high-resolution X-ray diffractor
    Mazuritsky, MI
    Latush, EM
    Soldatov, AV
    Ugol'nitskii, GA
    Lyashenko, VL
    Marcelli, A
    TECHNICAL PHYSICS LETTERS, 2000, 26 (06) : 502 - 504