CFD Modeling and Validation of the Turbulent Fluidized Bed of FCC Particles

被引:121
作者
Gao, Jinsen [1 ]
Lan, Xingying [1 ]
Fan, Yiping [1 ]
Chang, Jian [1 ]
Wang, Gang [1 ]
Lu, Chunxi [1 ]
Xu, Chunming [1 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
drag force model; turbulent fluidized bed; FCC particle; Eulerian simulation; KINETIC-THEORY; SIMULATION; GAS; HYDRODYNAMICS; FLOW; RISER; COEFFICIENT;
D O I
10.1002/aic.11824
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
An experimental and computational study is presented on the hydrodynamic characteristics of FCC particles in a turbulent fluidized bed. Based on the Eulerian/Eulerian model, a computational fluid dynamics (CFD) model incorporating a modified gas-solid drag model has been presented, and the model parameters are examined by, using a commerical CFD software package (FLUENT 6.2.16). Relative to other drag models, the modified one gives a reasonable hydroadynamic prediction in comparison with experimental data. The hydrodynamics show more sensitive to the coefficient of restitution than to the flow models and kinetics theories. Experimental and numerical results indicate that there exist two different coexisting regions in the turbulent fluidized bed: a bottom dense, bubbling region and a dilute, dispersed flow region. At low-gas velocity, solid-volume fractions show high near the wall region, and low in the center of the bed. Increasing gas velocity aggravates the turbulent disorder in the turbulent fluidized bed, resulting in an irregularity of the radial particle concentration profile. (C) 2009 American Institute of Chemical Engineers AIChE J, 55: 1680-1694, 2009
引用
收藏
页码:1680 / 1694
页数:15
相关论文
共 39 条
[1]   Computational fluid dynamics of high density circulating fluidized bed riser: Study of modeling parameters [J].
Almuttahar, Adnan ;
Taghipour, Fariborz .
POWDER TECHNOLOGY, 2008, 185 (01) :11-23
[2]   New description of fluidization regimes [J].
Andreux, R ;
Gauthier, T ;
Chaouki, J ;
Simonin, O .
AICHE JOURNAL, 2005, 51 (04) :1125-1130
[3]  
[Anonymous], 1993, DOEMETC9411004 NAT T
[4]   ANALYSIS OF IGT PNEUMATIC CONVEYING DATA AND FAST FLUIDIZATION USING A THERMO-HYDRODYNAMIC MODEL [J].
ARASTOOPOUR, H ;
GIDASPOW, D .
POWDER TECHNOLOGY, 1979, 22 (01) :77-87
[5]   HYDRODYNAMICS OF CIRCULATING FLUIDIZED-BED RISERS - A REVIEW [J].
BERRUTI, F ;
CHAOUKI, J ;
GODFROY, L ;
PUGSLEY, TS ;
PATIENCE, GS .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1995, 73 (05) :579-602
[6]   A state-of-the-art review of gas-solid turbulent fluidization [J].
Bi, HT ;
Ellis, N ;
Abba, IA ;
Grace, JR .
CHEMICAL ENGINEERING SCIENCE, 2000, 55 (21) :4789-4825
[7]  
Cao B., 2004, 2 INT S MULT NONN RE
[8]   Bed nonhomogeneity in turbulent gas-solid fluidization [J].
Du, B ;
Warsito, W ;
Fan, LS .
AICHE JOURNAL, 2003, 49 (05) :1109-1126
[9]   Gas and solids mixing in a turbulent fluidized bed [J].
Du, B ;
Fan, LS ;
Wei, F ;
Warsito, W .
AICHE JOURNAL, 2002, 48 (09) :1896-1909
[10]   Hydrodynamics of turbulent fluidized beds of different diameters [J].
Ellis, N ;
Bi, HT ;
Lim, CJ ;
Grace, JR .
POWDER TECHNOLOGY, 2004, 141 (1-2) :124-136