Steel fiber orientational distribution and effects on 3D printed concrete with coarse aggregate

被引:29
作者
Chen, Yidong [1 ,2 ]
Zhang, Yunsheng [1 ,2 ,3 ]
Pang, Bo [4 ]
Wang, Dafu [1 ,2 ]
Liu, Zhiyong [1 ,2 ]
Liu, Guojian [5 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Nanjing 211189, Peoples R China
[2] Collaborat Innovat Ctr Adv Civil Engn Mat, Nanjing 211189, Peoples R China
[3] Lanzhou Univ Technol, Sch Civil Engn, Lanzhou 730050, Peoples R China
[4] Qingdao Univ Technol, Dept Civil Engn, Qingdao 266033, Peoples R China
[5] Suzhou Univ Sci & Technol, Sch Civil Engn, Suzhou 215011, Peoples R China
关键词
3D concrete printing; Fresh properties; Mechanical performance; Fiber orientation; Anisotropy; CONSTRUCTION-INDUSTRY; BEHAVIOR; EXTRUSION; DUCTILITY; SURFACE;
D O I
10.1617/s11527-022-01943-7
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the first insight into the extrusion-based 3D printed steel fiber reinforced concrete with 5-20 mm coarse aggregate (3DPSFRC) is presented. The fresh properties and mechanical performance of 0%, 1% and 2% fiber content 3DPSFRC were investigated and compared with those of the cast. Through the deep-learning segmentation method, the centerlines of steel fibers in the X-ray micro-computed tomography image sequence are extracted and 3D analyzed. The orientational distribution coefficients were introduced to quantitatively indicate the degree of steel fiber inclination in the printing (theta) and stacking directions (gamma) inside the 3DPSFRC. Results indicate that the flowability of 3DPSFRC was decreased due to the presence of steel fibers compared with plain concrete. The enhancement effect of steel fiber on the compressive, flexural, and axial tensile strength (up to 73.24 MPa, 8.71 MPa, and 7.58 MPa, respectively) and post-peak toughness of 3DPSFRC is remarkable. The weakening of orientational distribution coefficients and the partial divergence distribution of steel fibers are related to the presence of coarse aggregate. Further, the anisotropy of 3DPSFRC in the compressive and flexural tests is weakened owing to the changes in the fiber orientational distribution after the steel fiber content increases.
引用
收藏
页数:19
相关论文
共 54 条
[1]  
Alpaydin E, 2016, Machine Learning
[2]  
[Anonymous], 2018, DRAG 3 6 COMP SOFTW
[3]   Fiber orientation effects on ultra-high performance concrete formed by 3D printing [J].
Arunothayan, Arun R. ;
Nematollahi, Behzad ;
Ranade, Ravi ;
Bong, Shin Hau ;
Sanjayan, Jay G. ;
Khayat, Kamal H. .
CEMENT AND CONCRETE RESEARCH, 2021, 143
[4]   Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction [J].
Arunothayan, Arun R. ;
Nematollahi, Behzad ;
Ranade, Ravi ;
Bong, Shin Hau ;
Sanjayan, Jay .
CONSTRUCTION AND BUILDING MATERIALS, 2020, 257
[5]   3D printing eco-friendly concrete containing under-utilised and waste solids as aggregates [J].
Bai, Gang ;
Wang, Li ;
Ma, Guowei ;
Sanjayan, Jay ;
Bai, Mingke .
CEMENT & CONCRETE COMPOSITES, 2021, 120
[6]   Ductility of 3D printed concrete reinforced with short straight steel fibers [J].
Bos, F. P. ;
Bosco, E. ;
Salet, T. A. M. .
VIRTUAL AND PHYSICAL PROTOTYPING, 2019, 14 (02) :160-174
[7]   3D printing using concrete extrusion: A roadmap for research [J].
Buswell, R. A. ;
de Silva, W. R. Leal ;
Jones, S. Z. ;
Dirrenberger, J. .
CEMENT AND CONCRETE RESEARCH, 2018, 112 :37-49
[8]   Extrusion-based 3D printing concrete with coarse aggregate: Printability and direction-dependent mechanical performance [J].
Chen, Yidong ;
Zhang, Yunsheng ;
Pang, Bo ;
Liu, Zhiyong ;
Liu, Guojian .
CONSTRUCTION AND BUILDING MATERIALS, 2021, 296 (296)
[9]   Vision of 3D printing with concrete - Technical, economic and environmental potentials [J].
De Schutter, Geert ;
Lesage, Karel ;
Mechtcherine, Viktor ;
Nerella, Venkatesh Naidu ;
Habert, Guillaume ;
Agusti-Juan, Isolda .
CEMENT AND CONCRETE RESEARCH, 2018, 112 :25-36
[10]   Orientation distribution of polyvinyl alcohol fibers and its influence on bridging capacity and mechanical performances for high ductility cementitious composites [J].
Ding, Cong ;
Guo, Liping ;
Chen, Bo .
CONSTRUCTION AND BUILDING MATERIALS, 2020, 247