Steel fiber orientational distribution and effects on 3D printed concrete with coarse aggregate

被引:25
|
作者
Chen, Yidong [1 ,2 ]
Zhang, Yunsheng [1 ,2 ,3 ]
Pang, Bo [4 ]
Wang, Dafu [1 ,2 ]
Liu, Zhiyong [1 ,2 ]
Liu, Guojian [5 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Nanjing 211189, Peoples R China
[2] Collaborat Innovat Ctr Adv Civil Engn Mat, Nanjing 211189, Peoples R China
[3] Lanzhou Univ Technol, Sch Civil Engn, Lanzhou 730050, Peoples R China
[4] Qingdao Univ Technol, Dept Civil Engn, Qingdao 266033, Peoples R China
[5] Suzhou Univ Sci & Technol, Sch Civil Engn, Suzhou 215011, Peoples R China
关键词
3D concrete printing; Fresh properties; Mechanical performance; Fiber orientation; Anisotropy; CONSTRUCTION-INDUSTRY; BEHAVIOR; EXTRUSION; DUCTILITY; SURFACE;
D O I
10.1617/s11527-022-01943-7
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the first insight into the extrusion-based 3D printed steel fiber reinforced concrete with 5-20 mm coarse aggregate (3DPSFRC) is presented. The fresh properties and mechanical performance of 0%, 1% and 2% fiber content 3DPSFRC were investigated and compared with those of the cast. Through the deep-learning segmentation method, the centerlines of steel fibers in the X-ray micro-computed tomography image sequence are extracted and 3D analyzed. The orientational distribution coefficients were introduced to quantitatively indicate the degree of steel fiber inclination in the printing (theta) and stacking directions (gamma) inside the 3DPSFRC. Results indicate that the flowability of 3DPSFRC was decreased due to the presence of steel fibers compared with plain concrete. The enhancement effect of steel fiber on the compressive, flexural, and axial tensile strength (up to 73.24 MPa, 8.71 MPa, and 7.58 MPa, respectively) and post-peak toughness of 3DPSFRC is remarkable. The weakening of orientational distribution coefficients and the partial divergence distribution of steel fibers are related to the presence of coarse aggregate. Further, the anisotropy of 3DPSFRC in the compressive and flexural tests is weakened owing to the changes in the fiber orientational distribution after the steel fiber content increases.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Steel fiber orientational distribution and effects on 3D printed concrete with coarse aggregate
    Yidong Chen
    Yunsheng Zhang
    Bo Pang
    Dafu Wang
    Zhiyong Liu
    Guojian Liu
    Materials and Structures, 2022, 55
  • [2] Hardened properties of 3D printed concrete with recycled coarse aggregate
    Liu, Huawei
    Liu, Chao
    Wu, Yiwen
    Bai, Guoliang
    He, Chunhui
    Zhang, Rongfei
    Wang, Youqiang
    CEMENT AND CONCRETE RESEARCH, 2022, 159
  • [3] Effect of Aggregate Gradation on the Properties of 3D Printed Recycled Coarse Aggregate Concrete
    Ding, Yahong
    Tong, Jiaqi
    Zhang, Meixiang
    Guo, Shuqi
    Zhang, Yaqi
    Zhao, Yu
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2024, 39 (06): : 1541 - 1554
  • [4] Influences of particle size on the performance of 3D printed coarse aggregate concrete: Experiment, microstructure, and mechanism analysis
    Wang, Hailong
    Shen, Wenbin
    Sun, Xiaoyan
    Song, Xinlei
    Lin, Xiqiang
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 463
  • [5] Mechanical properties of 3D printed concrete with coarse aggregates and polypropylene fiber in the air and underwater environment
    Seo, Eun-A
    Kim, Won-Woo
    Kim, Sung-Wook
    Kwon, Hong-Kyu
    Lee, Ho-Jae
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 378
  • [6] Effects of Groove and Steel Fiber on Shear Properties of Concrete with Recycled Coarse Aggregate
    Gao, Danying
    Yan, Yongming
    Pang, Yuyang
    Tang, Jiyu
    Yang, Lin
    Gu, Zhiqiang
    MATERIALS, 2020, 13 (20) : 1 - 18
  • [7] Polyacrylonitrile fiber reinforced 3D printed concrete: Effects of fiber length and content
    Ma, Wei
    Wang, Guosheng
    Zhou, Yaya
    Xu, Qinghu
    Dai, Yuntong
    JOURNAL OF BUILDING ENGINEERING, 2024, 97
  • [8] Evaluation of aggregates, fibers and voids distribution in 3D printed concrete
    Zhang, Yu
    Zhang, Yunsheng
    Yang, Lin
    Liu, Guojian
    Du, Hongjian
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2023, 12 (07) : 775 - 788
  • [9] A review of concrete 3D printed structural members
    Raphael, Benny
    Senthilnathan, Shanmugaraj
    Patel, Abhishek
    Bhat, Saqib
    FRONTIERS IN BUILT ENVIRONMENT, 2023, 8
  • [10] Bending behaviour of steel cable reinforced 3D printed concrete in the direction perpendicular to the interfaces
    Xiao, Jianzhuang
    Chen, Zixuan
    Ding, Tao
    Zou, Shuai
    CEMENT & CONCRETE COMPOSITES, 2022, 125