Method of moments estimators for the external index of a stationary time series

被引:1
作者
Buecher, Axel [1 ]
Jennessen, Tobias [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Univ Str 1, D-40225 Dusseldorf, Germany
来源
ELECTRONIC JOURNAL OF STATISTICS | 2020年 / 14卷 / 02期
关键词
WEAK-CONVERGENCE; EXTREMAL BEHAVIOR; INFERENCE; DEPENDENCE; MAXIMA;
D O I
10.1214/20-EJS1734
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The extremal index theta, a number in the interval [0, 1], is known to be a measure of primal importance for analyzing the extremes of a stationary time series. New rank-based estimators for theta are proposed which rely on the construction of approximate samples from the exponential distribution with parameter theta that is then to be fitted via the method of moments. The new estimators are analyzed both theoretically as well as empirically through a large-scale simulation study. In specific scenarios, in particular for time series models with theta approximate to 1, they are found to be superior to recent competitors from the literature.
引用
收藏
页码:3103 / 3156
页数:54
相关论文
共 34 条
  • [1] Beirlant J., 2004, WILEY SERIES PROBABI, DOI 10.1002/0470012382
  • [2] WEAK CONVERGENCE OF A PSEUDO MAXIMUM LIKELIHOOD ESTIMATOR FOR THE EXTREMAL INDEX
    Berghaus, Betina
    Buecher, Axel
    [J]. ANNALS OF STATISTICS, 2018, 46 (05) : 2307 - 2335
  • [3] GOODNESS-OF-FIT TESTS FOR MULTIVARIATE COPULA-BASED TIME SERIES MODELS
    Berghaus, Betina
    Buecher, Axel
    [J]. ECONOMETRIC THEORY, 2017, 33 (02) : 292 - 330
  • [4] Billingsley P., 1979, WILEY SERIES PROBABI
  • [5] Cai J. J., 2019, ARXIV E PRINTS
  • [6] A nonparametric estimation procedure for bivariate extreme value copulas
    Caperaa, P
    Fougeres, AL
    Genest, C
    [J]. BIOMETRIKA, 1997, 84 (03) : 567 - 577
  • [7] COPULAS AND MARKOV-PROCESSES
    DARSOW, WF
    NGUYEN, B
    OLSEN, ET
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1992, 36 (04) : 600 - 642
  • [8] EXTREMAL BEHAVIOR OF SOLUTIONS TO A STOCHASTIC DIFFERENCE EQUATION WITH APPLICATIONS TO ARCH PROCESSES
    DEHAAN, L
    RESNICK, SI
    ROOTZEN, H
    DEVRIES, CG
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1989, 32 (02) : 213 - 224
  • [9] Dehling H., 2002, Empirical Process Technique for Dependent Data, P3, DOI DOI 10.1007/978-1-4612-0099-41
  • [10] Drees H, 2000, ANN APPL PROBAB, V10, P1274