Holomorphic factorization of correlation functions in (4k+2)-dimensional (2k)-form gauge theory

被引:0
|
作者
Henningson, M [1 ]
Nilsson, BEW [1 ]
Salomonson, P [1 ]
机构
[1] Chalmers, Inst Theoret Phys, S-41296 Gothenburg, Sweden
来源
JOURNAL OF HIGH ENERGY PHYSICS | 1999年 / 09期
关键词
field theories in higher dimensions; differential and algebraic geometry;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider a free (2k)-form gauge-field on a euclidean (4k+2)-manifold. The parameters needed to specify the action and the gauge-invariant observables take their values in spaces with natural complex structures. We show that the correlation functions can be written as a finite sum of terms, each of which is a product of a holomorphic and an anti-holomorphic factor. The holomorphic factors are naturally interpreted as correlation functions for a chiral (2k)-form, i.e. a (2k)-form with a self-dual (2k + 1)-form field strength, after Wick rotation to a Minkowski signature.
引用
收藏
页数:13
相关论文
共 2 条