Epoxidized Natural Rubber/Chitosan Network Binder for Silicon Anode in Lithium-Ion Battery

被引:139
作者
Lee, Sang Ha [1 ]
Lee, Jeong Hun [1 ]
Nam, Dong Ho [2 ]
Cho, Misuk [1 ]
Kim, Jaehoon [2 ]
Chanthad, Chalathorn [1 ,3 ]
Lee, Youngkwan [1 ]
机构
[1] Sungkyunkwan Univ, Sch Chem Engn, Suwon 440746, South Korea
[2] Sungkyunkwan Univ, Sch Mech Engn, Suwon 440746, South Korea
[3] NSTDA, Natl Nanotechnol Ctr NANOTEC, Pathum Thani 12120, Thailand
基金
新加坡国家研究基金会;
关键词
elastic binder; chitosan; natural rubber; silicon anode; lithium-ion battery; SI-BASED ANODES; HIGH-PERFORMANCE; NEGATIVE ELECTRODES; POTENTIAL BINDER; POLYMERIC BINDER; RUBBER; CHITOSAN; ADHESION; DESIGN; ACID;
D O I
10.1021/acsami.8b01614
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polymeric binder is extremely important for Si based anode in lithium-ion batteries due to large volume variation during charging/discharging process. Here, natural rubber-incorporated chitosan networks were designed as a binder material to obtain both adhesion and elasticity. Chitosan could strongly anchor Si particles through hydrogen bonding, while the natural rubber could stretch reversibly during the volume variation of Si particles, resulting in high cyclic performance. The prepared electrode exhibited the specific capacities of 1350 mAh/g after 1600 cycles at the current density of 8 A/g and 2310 mAh/g after 500 cycles at the current density of 1 A/g. Furthermore, the cycle test with limiting lithiation capacity was conducted to study the optimal binder properties at varying degree of the volume expansion of silicon, and it was found that the elastic property of binder material was strongly required when the large volume expansion of Si occurred.
引用
收藏
页码:16449 / 16457
页数:9
相关论文
共 38 条
[1]  
[Anonymous], SCI REP
[2]   Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteriese [J].
Bie, Yitian ;
Yang, Jun ;
Nuli, Yanna ;
Wang, Jiulin .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (05) :1919-1924
[3]   Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries [J].
Bridel, J. -S. ;
Azais, T. ;
Morcrette, M. ;
Tarascon, J. -M. ;
Larcher, D. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :1229-1241
[4]   Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries [J].
Chen, Chao ;
Lee, Sang Ha ;
Cho, Misuk ;
Kim, Jaehoon ;
Lee, Youngkwan .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (04) :2658-2665
[5]   Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries [J].
Choi, Sunghun ;
Kwon, Tae-Woo ;
Coskun, Ali ;
Choi, Jang Wook .
SCIENCE, 2017, 357 (6348) :279-283
[6]   Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode [J].
Cui, Li-Feng ;
Hu, Liangbing ;
Wu, Hui ;
Choi, Jang Wook ;
Cui, Yi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (05) :A592-A596
[7]   Enhanced Adhesion of Elastic Materials to Small-Scale Wrinkles [J].
Davis, Chelsea S. ;
Martina, David ;
Creton, Costantino ;
Lindner, Anke ;
Crosby, Alfred J. .
LANGMUIR, 2012, 28 (42) :14899-14908
[8]   Determination of the diffusion coefficient of lithium ions in nano-Si [J].
Ding, N. ;
Xu, J. ;
Yao, Y. X. ;
Wegner, G. ;
Fang, X. ;
Chen, C. H. ;
Lieberwirth, I. .
SOLID STATE IONICS, 2009, 180 (2-3) :222-225
[9]   High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries [J].
Gong, Liyuan ;
Minh Hien Thi Nguyen ;
Oh, Eun-Suok .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 29 :45-47
[10]   A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery [J].
Guo, Juchen ;
Wang, Chunsheng .
CHEMICAL COMMUNICATIONS, 2010, 46 (09) :1428-1430