Symmetric tensor categories in characteristic 2

被引:15
作者
Benson, Dave
Etingof, Pavel
机构
基金
美国国家科学基金会;
关键词
Symmetric tensor category; Tilting module; MODULE CATEGORIES; REPRESENTATIONS;
D O I
10.1016/j.aim.2019.05.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct and study a nested sequence of finite symmetric tensor categories Vec = C-0 subset of C-1 subset of center dot center dot center dot C-n subset of center dot center dot center dot over a field of characteristic 2 such that C-2n are incompressible, i.e., do not admit tensor functors into tensor categories of smaller Frobenius-Perron dimension. This generalizes the category C-1 described by Venkatesh [28] and the category C-2 defined by Ostrik. The Grothendieck rings of the categories C-2n and C2n+1 are both isomorphic to the ring of real cyclotomic integers defined by a primitive 2(n+2)-th root of unity, O-n = Z[2 cos(pi/2(n+1))]. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:967 / 999
页数:33
相关论文
共 29 条
[1]   DIAGRAMS FOR MODULES [J].
ALPERIN, JL .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1980, 16 (02) :111-119
[2]   DIAGRAMMATIC METHODS FOR MODULAR-REPRESENTATIONS AND COHOMOLOGY [J].
BENSON, DJ ;
CARLSON, JF .
COMMUNICATIONS IN ALGEBRA, 1987, 15 (1-2) :53-121
[3]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[4]  
CARTIER P, 1956, CR HEBD ACAD SCI, V242, P322
[5]  
Davydov A., BRAIDED EXTENS UNPUB
[6]   The Picard crossed module of a braided tensor category [J].
Davydov, Alexei ;
Nikshych, Dmitri .
ALGEBRA & NUMBER THEORY, 2013, 7 (06) :1365-1403
[7]   Z/2Z-extensions of Hopf algebra module categories by their base categories [J].
Davydov, Alexei ;
Runkel, Ingo .
ADVANCES IN MATHEMATICS, 2013, 247 :192-265
[8]   CATEGORIES TENSORIELLES [J].
Deligne, P. .
MOSCOW MATHEMATICAL JOURNAL, 2002, 2 (02) :227-248
[9]  
Deligne P., CATEGORIE REPRESENTA
[10]  
Deligne P., 1982, Lecture Notes in Mathematics, V900, P101, DOI [10.1007/978-3-540-38955-24, 10.1007/978-3-540-38955-, DOI 10.1007/978-3-540-38955]