Integer-valued Polynomials Over Matrix Rings of Number Fields

被引:0
|
作者
Hafshejani, Javad Sedighi [1 ]
Naghipour, Ali Reza [1 ]
机构
[1] Shahrekord Univ, Dept Math, POB 115, Shahrekord, Iran
关键词
Algebraic integer; Integer-valued polynomial; Galois extension; Matrix ring; Noetherian ring; ALGEBRAIC-SETS;
D O I
10.1007/s41980-020-00484-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the ring of integer-valued polynomials Int(Mn(O-K)) := {f is an element of M-n(K)[x] | f (M-n(O-K)) subset of M-n(O-K)}, where K is a number field and O-K is the ring of algebraic integers of K. We show that for a prime number p is an element of Z, the polynomial f(p,n)(x) := (xp(n) - x)(xp(n-1) - x) ... (x(p) - x) p is an element of Int(M-n(O-K)) if and only if p is a totally split prime in O-K. Also, we consider the ring Int(Mn (Q))(M-n(O-K)) := Int(M-n(O-K)) boolean AND M-n(Q)[x]. Then, we characterize finite Galois extensions K of Q in terms of the ring Int(Mn) ((Q))(M-n(O-K)). In fact, we prove that Int(Mn (Q))(M-n(O-K)) = Int(Mn (Q))(M-n(O-K')) if and only if K = K', where K, K' are two finite Galois extensions of Q. Finally, we present some results on Noetherian property of the rings Int(Mn (Q))(M-n(O-K)). Then, we obtain many non-Noetherian integral domains, IntQ(O-K), between the ring Z[x] and the classical ring of integer-valued polynomials Int(Z).
引用
收藏
页码:2005 / 2013
页数:9
相关论文
共 50 条
  • [21] ON P-ORDERINGS, RINGS OF INTEGER-VALUED POLYNOMIALS, AND ULTRAMETRIC ANALYSIS
    Bhargava, Manjul
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 22 (04) : 963 - 993
  • [22] Restricted elasticity and rings of integer-valued polynomials determined by finite subsets
    Chapman, Scott T.
    Smith, William W.
    MONATSHEFTE FUR MATHEMATIK, 2006, 148 (03): : 195 - 203
  • [23] SPLIT QUATERNIONS AND INTEGER-VALUED POLYNOMIALS
    Cigliola, A.
    Loper, K. A.
    Werner, N. J.
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (01) : 182 - 196
  • [24] On image sets of integer-valued polynomials
    Chapman, Scott T.
    Ponomarenko, Vadim
    JOURNAL OF ALGEBRA, 2011, 348 (01) : 350 - 353
  • [25] Prufer Domains of Integer-Valued Polynomials
    Loper, K. Alan
    Syvuk, Mark
    MULTIPLICATIVE IDEAL THEORY AND FACTORIZATION THEORY: COMMUTATIVE AND NON-COMMUTATIVE PERSPECTIVES, 2016, 170 : 219 - 231
  • [26] Integer-valued polynomials satisfying the Lucas property
    Meesa, Rattiya
    Laohakosol, Vichian
    Chaichana, Tuangrat
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (03) : 1459 - 1478
  • [27] On the Module Structure of the Integer-Valued Polynomial Rings
    Izelgue, L.
    Mimouni, A. Achour
    Tamoussit, A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2687 - 2699
  • [28] Split absolutely irreducible integer-valued polynomials over discrete valuation domains
    Frisch, Sophie
    Nakato, Sarah
    Rissner, Roswitha
    JOURNAL OF ALGEBRA, 2022, 602 : 247 - 277
  • [29] Generators of maximal ideals in the ring of integer-valued polynomials
    Chapman, ST
    Smith, WW
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (01) : 95 - 105
  • [30] INTEGER-VALUED POLYNOMIALS ON THE HURWITZ RING OF INTEGRAL QUATERNIONS
    Johnson, K.
    Pavlovski, M.
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (11) : 4171 - 4176