Laser wakefield structure in a plasma column created in capillary tubes

被引:37
作者
Andreev, NE [1 ]
Cros, B
Gorbunov, LM
Matthieussent, G
Mora, P
Ramazashvili, RR
机构
[1] Russian Acad Sci, Inst High Energy Dens, Associated Inst High Temp, Izhorskaya 13-19, Moscow 127412, Russia
[2] Univ Paris 11, Phys Gaz & Plasmas Lab, CNRS, UMR 8578, F-91405 Orsay, France
[3] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[4] Ecole Polytech, CNRS, Ctr Phys Theor, UMR 7644, F-91128 Palaiseau, France
关键词
D O I
10.1063/1.1497165
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The structure of the wakefield is studied in a plasma column, created by a monomode laser pulse propagating in a capillary tube, filled with gas affected by tunneling ionization. Linear analytical considerations as well as self-consistent numerical simulations show that in the central bulk part of a plasma column where the laser intensity exceeds the ionization threshold, the wakefield structure is similar to that of an infinite homogeneous plasma. Near the wall of the capillary tube, where the laser intensity decreases below the ionization threshold and where the plasma density falls to zero, the curvature of the plasma wave phase front increases with the distance from the laser pulse, resulting in small-scale radial electric field which may undergo phase mixing. (C) 2002 American Institute of Physics.
引用
收藏
页码:3999 / 4009
页数:11
相关论文
共 61 条
[1]   COLD-PLASMA WAVE-BREAKING - PRODUCTION OF ENERGETIC ELECTRONS [J].
ALBRITTON, J ;
KOCH, P .
PHYSICS OF FLUIDS, 1975, 18 (09) :1136-1139
[2]   Observation of laser wakefield acceleration of electrons [J].
Amiranoff, F ;
Baton, S ;
Bernard, D ;
Cros, B ;
Descamps, D ;
Dorchies, F ;
Jacquet, F ;
Malka, V ;
Marques, JR ;
Matthieussent, G ;
Mine, P ;
Modena, A ;
Mora, P ;
Morillo, J ;
Najmudin, Z .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :995-998
[3]  
Ammosov M. V., 1986, Soviet Physics - JETP, V64, P1191
[4]   Non-adiabatic energy deposition from the short intense laser pulse to the ionizing gas. [J].
Andreev, NE ;
Chegotov, MV ;
Veisman, ME ;
He, B ;
Zhang, JT .
ICONO '98: ULTRAFAST PHENOMENA AND INTERACTION OF SUPERSTRONG LASER FIELDS WITH MATTER: NONLINEAR OPTICS AND HIGH-FIELD PHYSICS, 1999, 3735 :234-241
[5]   On laser wakefield acceleration in plasma channels [J].
Andreev, NE ;
Chizhonkov, EV ;
Frolov, AA ;
Gorbunov, LM .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1998, 410 (03) :469-476
[6]   Generation of a wakefield during gas ionization [J].
Andreev, NE ;
Veisman, ME ;
Cadjan, MG ;
Chegotov, MV .
PLASMA PHYSICS REPORTS, 2000, 26 (11) :947-959
[7]  
Andreev NE, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.056407
[8]   Residual electron momentum and energy in a gas ionized by a short high-power laser pulse [J].
Andreev, NE ;
Veisman, ME ;
Goreslavskii, SP ;
Chegotov, MV .
PLASMA PHYSICS REPORTS, 2001, 27 (04) :278-292
[9]   Propagation of intense laser pulses through inhomogeneous ionizing gas profiles [J].
Andreev, NE ;
Chegotov, MV ;
Downer, MC ;
Gaul, EW ;
Matlis, NH ;
Pogosova, AA ;
Rundquist, AR .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2000, 28 (04) :1090-1097
[10]   Wakefield generation by elliptically polarized femtosecond laser pulse in ionizing gases [J].
Andreev, NE ;
Chegotov, MV ;
Veisman, ME .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2000, 28 (04) :1098-1105