ITERATIVE APPROXIMATION OF SOLUTIONS OF GENERALIZED EQUATIONS OF HAMMERSTEIN TYPE

被引:0
作者
Chidume, C. E. [1 ]
Shehu, Y. [2 ]
机构
[1] African Univ Sci Technol, Math Inst, Abuja, Nigeria
[2] Univ Nigeria, Dept Math, Nsukka, Nigeria
来源
FIXED POINT THEORY | 2014年 / 15卷 / 02期
关键词
Monotone operators; equations of Hammerstein type; strong convergence; Hilbert spaces; NONLINEAR INTEGRAL-EQUATIONS; MONOTONE-OPERATORS; SYSTEMS; INEQUALITIES; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a real Hilbert space. For each i = 1, 2,...m, let F-i, K-i : H -> H be bounded and monotone mappings. Assume that the generalized Hammerstein equation u + Sigma(m)(i=1) K(i)F(i)u = 0 has a solution in H. We construct a new explicit iterative sequence and prove strong convergence of the sequence to a solution of the generalized Hammerstein equation.
引用
收藏
页码:427 / 440
页数:14
相关论文
共 35 条
[1]  
[Anonymous], 1978, Nonlinear mappings of monotone type
[2]  
Berinde V., 2002, Iterative approximation of fixed points
[3]  
Berinde V, 2007, LECT NOTES MATH, V1912, P1
[4]   EXISTENCE THEOREMS FOR NONLINEAR INTEGRAL-EQUATIONS OF HAMMERSTEIN TYPE [J].
BREZIS, H ;
BROWDER, FE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (01) :73-78
[5]   SOME NEW RESULTS ABOUT HAMMERSTEIN EQUATIONS [J].
BREZIS, H ;
BROWDER, FE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (03) :567-572
[6]   NONLINEAR INTEGRAL-EQUATIONS AND SYSTEMS OF HAMMERSTEIN TYPE [J].
BREZIS, H ;
BROWDER, FE .
ADVANCES IN MATHEMATICS, 1975, 18 (02) :115-147
[7]  
Browder F. E., 1971, CONTRIBUTIONS NONLIN, P425
[9]   MAXIMAL MONOTONE OPERATORS AND NONLINEAR INTEGRAL EQUATIONS OF HAMMERSTEIN TYPE [J].
BROWDER, FE ;
DEFIGUEI.DG ;
GUPTA, CP .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 76 (04) :700-&
[10]   MONOTONE OPERATORS AND NONLINEAR INTEGRAL EQUATIONS OF HAMMERSTEIN TYPE [J].
BROWDER, FE ;
GUPTA, CP .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (06) :1347-&