Decomposition of Levy trees along their diameter

被引:10
作者
Duquesne, Thomas [1 ]
Wang, Minmin [1 ]
机构
[1] UPMC Univ Paris 06, Sorbonne Univ, LPMA UMR 7599, Boite Courrier 188,4 Pl Jussieu, F-75252 Paris 05, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2017年 / 53卷 / 02期
关键词
Levy trees; Height process; Diameter; Decomposition; Asymptotic expansion; Stable law; CONTINUUM RANDOM TREE; SELF-SIMILAR FRAGMENTATIONS; GALTON-WATSON TREES; GROWTH; NODES;
D O I
10.1214/15-AIHP725
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the diameter of Levy trees that are random compact metric spaces obtained as the scaling limits of Galton-Watson trees. Levy trees have been introduced by Le Gall & Le Jan (Ann. Probab. 26 (1998) 213-252) and they generalise Aldous' Continuum Random Tree (1991) that corresponds to the Brownian case. We first characterize the law of the diameter of Levy trees and we prove that it is realized by a unique pair of points. We prove that the law of Levy trees conditioned to have a fixed diameter r is an element of (0, infinity) is obtained by glueing at their respective roots two independent size-biased Levy trees conditioned to have height r/2 and then by uniformly re-rooting the resulting tree; we also describe by a Poisson point measure the law of the subtrees that are grafted on the diameter. As an application of this decomposition of Levy trees according to their diameter, we characterize the joint law of the height and the diameter of stable Levy trees conditioned by their total mass; we also provide asymptotic expansions of the law of the height and of the diameter of such normalised stable trees, which generalises the identity due to Szekeres (In Combinatorial Mathematics, X (Adelaide, 1982) (1983) 392-397 Springer) in the Brownian case.
引用
收藏
页码:539 / 593
页数:55
相关论文
共 50 条
[31]   Feature set decomposition for decision trees [J].
Rokach, Lior ;
Maimon, Oded .
INTELLIGENT DATA ANALYSIS, 2005, 9 (02) :131-158
[32]   Decomposition of some planar graphs into trees [J].
Petrovic, V .
DISCRETE MATHEMATICS, 1996, 150 (1-3) :449-451
[33]   On the sum of the squares of all distances in trees with fixed diameter [J].
Geng, Xianya ;
Zhao, Hongjin .
ARS COMBINATORIA, 2018, 139 :145-157
[34]   Lexicographical ordering by spectral moments of trees with a prescribed diameter [J].
Wu, Yaping ;
Liu, Huiqing .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (11-12) :1707-1713
[35]   On the second largest adjacency eigenvalue of trees with given diameter [J].
Kumar, Hitesh ;
Mohar, Bojan ;
Pragada, Shivaramakrishna ;
Zhan, Hanmeng .
LINEAR & MULTILINEAR ALGEBRA, 2025,
[36]   The Terminal Wiener Index of Trees with Diameter or Maximum Degree [J].
Chen, Ya-Hong ;
Zhang, Xiao-Dong .
ARS COMBINATORIA, 2015, 120 :353-367
[37]   The minimal Laplacian spectral radius of trees with diameter 4 [J].
Zhang, Haixia ;
Wang, Yi .
THEORETICAL COMPUTER SCIENCE, 2017, 657 :191-195
[38]   Height-diameter allometry of tropical forest trees [J].
Feldpausch, T. R. ;
Banin, L. ;
Phillips, O. L. ;
Baker, T. R. ;
Lewis, S. L. ;
Quesada, C. A. ;
Affum-Baffoe, K. ;
Arets, E. J. M. M. ;
Berry, N. J. ;
Bird, M. ;
Brondizio, E. S. ;
de Camargo, P. ;
Chave, J. ;
Djagbletey, G. ;
Domingues, T. F. ;
Drescher, M. ;
Fearnside, P. M. ;
Franca, M. B. ;
Fyllas, N. M. ;
Lopez-Gonzalez, G. ;
Hladik, A. ;
Higuchi, N. ;
Hunter, M. O. ;
Iida, Y. ;
Salim, K. A. ;
Kassim, A. R. ;
Keller, M. ;
Kemp, J. ;
King, D. A. ;
Lovett, J. C. ;
Marimon, B. S. ;
Marimon-Junior, B. H. ;
Lenza, E. ;
Marshall, A. R. ;
Metcalfe, D. J. ;
Mitchard, E. T. A. ;
Moran, E. F. ;
Nelson, B. W. ;
Nilus, R. ;
Nogueira, E. M. ;
Palace, M. ;
Patino, S. ;
Peh, K. S. -H. ;
Raventos, M. T. ;
Reitsma, J. M. ;
Saiz, G. ;
Schrodt, F. ;
Sonke, B. ;
Taedoumg, H. E. ;
Tan, S. .
BIOGEOSCIENCES, 2011, 8 (05) :1081-1106
[39]   Defining the allometry of stem and crown diameter of urban trees [J].
Coombes, Andrew ;
Martin, Jaime ;
Slater, Duncan .
URBAN FORESTRY & URBAN GREENING, 2019, 44
[40]   The minimal Laplacian spectral radius of trees with a given diameter [J].
Liu, Ruifang ;
Lu, Zhonghua ;
Shu, Jinlong .
THEORETICAL COMPUTER SCIENCE, 2009, 410 (01) :78-83