Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium

被引:78
|
作者
Wu, JC
Chen, IY
Wang, YL
Tseng, JR
Chhabra, A
Salek, M
Min, JJ
Fishbein, MC
Crystal, R
Gambhir, SS
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Mol & Med Pharmacol, Crump Inst Mol Imaging, Los Angeles, CA USA
[2] Univ Calif Los Angeles, Sch Med, Div Nucl Med, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Sch Med, Dept Pathol, Los Angeles, CA USA
[4] Univ Calif Los Angeles, Sch Med, Dept Med, Div Cardiol, Los Angeles, CA USA
[5] Cornell Univ, Weill Med Coll, Dept Med, Ithaca, NY USA
[6] Stanford Univ, Dept Radiol, Palo Alto, CA USA
[7] Stanford Univ, Bio X Program, Palo Alto, CA USA
关键词
gene therapy; angiogenesis; imaging; myocardium; nuclear medicine;
D O I
10.1161/01.CIR.0000138153.02213.22
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Angiogenic gene therapy is a promising treatment paradigm for patients with ischemic heart disease. In this study, we used micro-positron emission tomography (microPET) to monitor the transgene expression, function, and effects in a whole-body system. Methods and Results-Adenovirus with cytomegalovirus promoter driving an angiogenic gene (vascular endothelial growth factor [VEGF]) linked to a PET reporter gene (herpes simplex virus type 1 mutant thymidine kinase; Ad-CMV-VEGF(121)-CMV-HSV1-sr39tk) was used to transfect rat embryonic cardiomyoblasts in vitro. Expression of both genes correlated strongly (r=0.98; P<0.001). Afterward, rats underwent ligation of the left anterior descending artery followed by injection of 1x10(10) pfu of Ad-CMV-VEGF(121)-CMV-HSV1-sr39tk ( study; n=35) or Ad-null (control; n=15) at the peri-infarct region. Noninvasive microPET imaging was used to assess the uptake of 9-(4-[F-18]-fluorohydroxymethylbutyl) guanine ([F-18]-FHBG) PET reporter probe by cells expressing the HSV1-sr39tk PET reporter gene. Cardiac transgene expression peaked at day 1 and declined over the next 2 weeks. Repeat adenoviral injections at day 60 yielded no detectable signal. The in vivo reporter gene expression (% injected dose/g of [F-18]-FHBG) correlated well with ex vivo gamma counting (r=0.92), myocardial tissue HSV1-sr39TK enzyme activity (r=0.95), and myocardial tissue VEGF level (r=0.94; P<0.001 for all). The VEGF(121) isoform induced significant increases in capillaries and small blood vessels. However, the level of neovasculature did not translate into significant improvements in functional parameters such as myocardial contractility by echocardiography, perfusion by nitrogen-13 ammonia imaging, and metabolism by [F-18]-fluorodeoxyglucose imaging. Conclusions-Taken together, these findings establish the feasibility of molecular imaging for monitoring angiogenic gene expression with a PET reporter gene and probe noninvasively, quantitatively, and repetitively. The principles demonstrated here can be used to evaluate other therapeutic genes of interest in animal models before future clinical trials are initiated.
引用
收藏
页码:685 / 691
页数:7
相关论文
共 50 条
  • [41] Long-term effect of gene therapy for chronic ischemic myocardium using platelet-derived endothelial cell growth factor in dogs
    Li, Wei
    Tanaka, Kuniyoshi
    Morioka, Koichi
    Takamori, Atsushi
    Handa, Mitsuteru
    Yamada, Narihisa
    Ihaya, Akio
    JOURNAL OF GENE MEDICINE, 2008, 10 (04) : 412 - 420
  • [42] Progressive expression of vascular endothelial growth factor (VEGF) and angiogenesis after chronic ischemic hypoperfusion in rat
    Ohtaki, H.
    Fujimoto, T.
    Sato, T.
    Kishimoto, K.
    Fujimoto, M.
    Moriya, M.
    Shioda, S.
    BRAIN EDEMA XIII, 2006, 96 : 283 - +
  • [43] Inhibition of vascular endothelial growth factor expression in keloid fibroblasts by vector-mediated vascular endothelial growth factor shRNA: a therapeutic potential strategy for keloid
    Zhang, Guo-You
    Yi, Cheng-Gang
    Li, Xuan
    Zheng, Yan
    Niu, Zhan-Guo
    Xia, Wei
    Meng, Zhou
    Meng, Cheng-Yue
    Guo, Shu-Zhong
    ARCHIVES OF DERMATOLOGICAL RESEARCH, 2008, 300 (04) : 177 - 184
  • [44] Inhibition of vascular endothelial growth factor expression in keloid fibroblasts by vector-mediated vascular endothelial growth factor shRNA: a therapeutic potential strategy for keloid
    Guo-You Zhang
    Cheng-Gang Yi
    Xuan Li
    Yan Zheng
    Zhan-Guo Niu
    Wei Xia
    Zhou Meng
    Cheng-Yue Meng
    Shu-Zhong Guo
    Archives of Dermatological Research, 2008, 300 : 177 - 184
  • [45] ANGIOGENIC-INDUCED ENHANCEMENT OF COLLATERAL BLOOD-FLOW TO ISCHEMIC MYOCARDIUM BY VASCULAR ENDOTHELIAL GROWTH-FACTOR IN DOGS
    BANAI, S
    JAKLITSCH, MT
    SHOU, M
    LAZAROUS, DF
    SCHEINOWITZ, M
    BIRO, S
    EPSTEIN, SE
    UNGER, EF
    CIRCULATION, 1994, 89 (05) : 2183 - 2189
  • [46] EXPRESSION OF THE VASCULAR-PERMEABILITY FACTOR VASCULAR ENDOTHELIAL GROWTH-FACTOR GENE IN CENTRAL-NERVOUS-SYSTEM NEOPLASMS
    BERKMAN, RA
    MERRILL, MJ
    REINHOLD, WC
    MONACCI, WT
    SAXENA, A
    CLARK, WC
    ROBERTSON, JT
    ALI, IU
    OLDFIELD, EH
    JOURNAL OF CLINICAL INVESTIGATION, 1993, 91 (01) : 153 - 159
  • [47] An update on angiogenic gene therapy:: Vascular endothelial growth factor and other directions
    Yla-Herttuala, Seppo
    CURRENT OPINION IN MOLECULAR THERAPEUTICS, 2006, 8 (04) : 295 - 300
  • [48] In vitro and in vivo study of the expression vector encoding vascular endothelial growth factor
    Malecki, M
    Przybyszewska, M
    Janik, P
    ARCHIVUM IMMUNOLOGIAE ET THERAPIAE EXPERIMENTALIS, 2001, 49 (03) : 243 - 246
  • [49] Vascular Endothelial Growth Factor Enhances Proliferation of Human Tenocytes and Promotes Tenogenic Gene Expression
    Kraus, Armin
    Sattler, Daniel
    Wehland, Markus
    Luetzenberg, Ronald
    Abuagela, Nauras
    Infanger, Manfred
    PLASTIC AND RECONSTRUCTIVE SURGERY, 2018, 142 (05) : 1240 - 1247
  • [50] Transcription factors having impact on vascular endothelial growth factor (VEGF) gene expression in angiogenesis
    Josko, J
    Mazurek, M
    MEDICAL SCIENCE MONITOR, 2004, 10 (04): : RA89 - RA98