Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium

被引:78
|
作者
Wu, JC
Chen, IY
Wang, YL
Tseng, JR
Chhabra, A
Salek, M
Min, JJ
Fishbein, MC
Crystal, R
Gambhir, SS
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Mol & Med Pharmacol, Crump Inst Mol Imaging, Los Angeles, CA USA
[2] Univ Calif Los Angeles, Sch Med, Div Nucl Med, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Sch Med, Dept Pathol, Los Angeles, CA USA
[4] Univ Calif Los Angeles, Sch Med, Dept Med, Div Cardiol, Los Angeles, CA USA
[5] Cornell Univ, Weill Med Coll, Dept Med, Ithaca, NY USA
[6] Stanford Univ, Dept Radiol, Palo Alto, CA USA
[7] Stanford Univ, Bio X Program, Palo Alto, CA USA
关键词
gene therapy; angiogenesis; imaging; myocardium; nuclear medicine;
D O I
10.1161/01.CIR.0000138153.02213.22
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Angiogenic gene therapy is a promising treatment paradigm for patients with ischemic heart disease. In this study, we used micro-positron emission tomography (microPET) to monitor the transgene expression, function, and effects in a whole-body system. Methods and Results-Adenovirus with cytomegalovirus promoter driving an angiogenic gene (vascular endothelial growth factor [VEGF]) linked to a PET reporter gene (herpes simplex virus type 1 mutant thymidine kinase; Ad-CMV-VEGF(121)-CMV-HSV1-sr39tk) was used to transfect rat embryonic cardiomyoblasts in vitro. Expression of both genes correlated strongly (r=0.98; P<0.001). Afterward, rats underwent ligation of the left anterior descending artery followed by injection of 1x10(10) pfu of Ad-CMV-VEGF(121)-CMV-HSV1-sr39tk ( study; n=35) or Ad-null (control; n=15) at the peri-infarct region. Noninvasive microPET imaging was used to assess the uptake of 9-(4-[F-18]-fluorohydroxymethylbutyl) guanine ([F-18]-FHBG) PET reporter probe by cells expressing the HSV1-sr39tk PET reporter gene. Cardiac transgene expression peaked at day 1 and declined over the next 2 weeks. Repeat adenoviral injections at day 60 yielded no detectable signal. The in vivo reporter gene expression (% injected dose/g of [F-18]-FHBG) correlated well with ex vivo gamma counting (r=0.92), myocardial tissue HSV1-sr39TK enzyme activity (r=0.95), and myocardial tissue VEGF level (r=0.94; P<0.001 for all). The VEGF(121) isoform induced significant increases in capillaries and small blood vessels. However, the level of neovasculature did not translate into significant improvements in functional parameters such as myocardial contractility by echocardiography, perfusion by nitrogen-13 ammonia imaging, and metabolism by [F-18]-fluorodeoxyglucose imaging. Conclusions-Taken together, these findings establish the feasibility of molecular imaging for monitoring angiogenic gene expression with a PET reporter gene and probe noninvasively, quantitatively, and repetitively. The principles demonstrated here can be used to evaluate other therapeutic genes of interest in animal models before future clinical trials are initiated.
引用
收藏
页码:685 / 691
页数:7
相关论文
共 50 条
  • [21] Molecular regulation of vascular endothelial growth factor expression in the retinal pigment epithelium
    Ford, Knatokie M.
    D'Amore, Patricia A.
    MOLECULAR VISION, 2012, 18 (57-59): : 519 - 527
  • [22] Vascular endothelial growth factor gene polymorphism and protein expression in the pathogenesis of pterygium
    Peng, Mei-Ling
    Tsai, Yi-Yu
    Tung, Jai-Nien
    Chiang, Chun-Chi
    Huang, Ying-Cher
    Lee, Huei
    Cheng, Ya-Wen
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2014, 98 (04) : 556 - 561
  • [23] Cardiac expression profiles of the naked DNA vectors encoding vascular endothelial growth factor and basic fibroblast growth factor
    Lee, JS
    Byun, J
    Kim, JM
    Kim, CY
    Kim, BY
    Chung, JH
    Jang, Y
    Kim, DK
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2005, 37 (05) : 447 - 456
  • [24] Cardiac expression profiles of the naked DNA vectors encoding vascular endothelial growth factor and basic fibroblast growth factor
    Jung-Sun Lee
    Jonghoe Byun
    Jung-Min Kim
    Chae-Young Kim
    Byong-Moon Kim
    Ji Hyung Chung
    Yangsoo Jang
    Duk-Kyung Kim
    Experimental & Molecular Medicine, 2005, 37 : 447 - 456
  • [25] Immunohistochemical Expression of Vascular Endothelial Growth Factor and Vascular Endothelial Growth Factor Receptor in Canine Cutaneous Fibrosarcomas
    Al-Dissi, A. N.
    Haines, D. M.
    Singh, B.
    Kidney, B. A.
    JOURNAL OF COMPARATIVE PATHOLOGY, 2009, 141 (04) : 229 - 236
  • [26] The association of κ-ras gene mutation and vascular endothelial growth factor gene expression in pancreatic carcinoma
    Ikeda, N
    Nakajima, Y
    Sho, M
    Adachi, M
    Huang, CI
    Iki, K
    Kanehiro, H
    Hisanaga, M
    Nakano, H
    Miyake, M
    CANCER, 2001, 92 (03) : 488 - 499
  • [27] Gene therapy with vascular endothelial growth factors
    Yla-Herttuala, Seppo
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2009, 37 : 1198 - 1200
  • [28] DEVELOPMENTAL EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR 3 AND VASCULAR ENDOTHELIAL GROWTH FACTOR C IN FOREBRAIN
    Ward, M. C.
    Cunningham, A. M.
    NEUROSCIENCE, 2015, 303 : 544 - 557
  • [29] Positron-emission tomography reporter gene expression imaging in rat myocardium
    Inubushi, M
    Wu, JC
    Gambhir, SS
    Sundaresan, G
    Satyamurthy, N
    Namavari, M
    Yee, S
    Barrio, JR
    Stout, D
    Chatziioannou, AF
    Wu, LL
    Schelbert, HR
    CIRCULATION, 2003, 107 (02) : 326 - 332
  • [30] Vascular endothelial growth factor overexpression in ischemic skeletal muscle enhances myoglobin expression in vivo
    van Weel, V
    Deckers, MML
    Grimbergen, JM
    van Leuven, KJM
    Lardenoye, JWHP
    Schlingemann, RO
    Amerongen, GPV
    van Bockel, JH
    van Hinsbergh, VWM
    Quax, PHA
    CIRCULATION RESEARCH, 2004, 95 (01) : 58 - 66