Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium

被引:78
|
作者
Wu, JC
Chen, IY
Wang, YL
Tseng, JR
Chhabra, A
Salek, M
Min, JJ
Fishbein, MC
Crystal, R
Gambhir, SS
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Mol & Med Pharmacol, Crump Inst Mol Imaging, Los Angeles, CA USA
[2] Univ Calif Los Angeles, Sch Med, Div Nucl Med, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Sch Med, Dept Pathol, Los Angeles, CA USA
[4] Univ Calif Los Angeles, Sch Med, Dept Med, Div Cardiol, Los Angeles, CA USA
[5] Cornell Univ, Weill Med Coll, Dept Med, Ithaca, NY USA
[6] Stanford Univ, Dept Radiol, Palo Alto, CA USA
[7] Stanford Univ, Bio X Program, Palo Alto, CA USA
关键词
gene therapy; angiogenesis; imaging; myocardium; nuclear medicine;
D O I
10.1161/01.CIR.0000138153.02213.22
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Angiogenic gene therapy is a promising treatment paradigm for patients with ischemic heart disease. In this study, we used micro-positron emission tomography (microPET) to monitor the transgene expression, function, and effects in a whole-body system. Methods and Results-Adenovirus with cytomegalovirus promoter driving an angiogenic gene (vascular endothelial growth factor [VEGF]) linked to a PET reporter gene (herpes simplex virus type 1 mutant thymidine kinase; Ad-CMV-VEGF(121)-CMV-HSV1-sr39tk) was used to transfect rat embryonic cardiomyoblasts in vitro. Expression of both genes correlated strongly (r=0.98; P<0.001). Afterward, rats underwent ligation of the left anterior descending artery followed by injection of 1x10(10) pfu of Ad-CMV-VEGF(121)-CMV-HSV1-sr39tk ( study; n=35) or Ad-null (control; n=15) at the peri-infarct region. Noninvasive microPET imaging was used to assess the uptake of 9-(4-[F-18]-fluorohydroxymethylbutyl) guanine ([F-18]-FHBG) PET reporter probe by cells expressing the HSV1-sr39tk PET reporter gene. Cardiac transgene expression peaked at day 1 and declined over the next 2 weeks. Repeat adenoviral injections at day 60 yielded no detectable signal. The in vivo reporter gene expression (% injected dose/g of [F-18]-FHBG) correlated well with ex vivo gamma counting (r=0.92), myocardial tissue HSV1-sr39TK enzyme activity (r=0.95), and myocardial tissue VEGF level (r=0.94; P<0.001 for all). The VEGF(121) isoform induced significant increases in capillaries and small blood vessels. However, the level of neovasculature did not translate into significant improvements in functional parameters such as myocardial contractility by echocardiography, perfusion by nitrogen-13 ammonia imaging, and metabolism by [F-18]-fluorodeoxyglucose imaging. Conclusions-Taken together, these findings establish the feasibility of molecular imaging for monitoring angiogenic gene expression with a PET reporter gene and probe noninvasively, quantitatively, and repetitively. The principles demonstrated here can be used to evaluate other therapeutic genes of interest in animal models before future clinical trials are initiated.
引用
收藏
页码:685 / 691
页数:7
相关论文
共 50 条
  • [1] Combination of angiopoietin-1 and vascular endothelial growth factor gene therapy enhances arteriogenesis in the ischemic myocardium
    Siddiqui, AJ
    Blomberg, P
    Wärdell, E
    Hellgren, I
    Eskandarpour, M
    Islam, KB
    Sylvén, C
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 310 (03) : 1002 - 1009
  • [2] Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression
    Cai, Weibo
    Chen, Xiaoyuan
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2007, 12 : 4267 - 4279
  • [3] Transplantation of endothelial progenitor cells transferred by vascular endothelial growth factor gene for vascular regeneration of ischemic flaps
    Yi, Chenggang
    Xia, Wei
    Zheng, Yan
    Zhang, Lingxi
    Shu, Maoguo
    Liang, Jie
    Han, Yan
    Guo, Shuzhong
    JOURNAL OF SURGICAL RESEARCH, 2006, 135 (01) : 100 - 106
  • [4] Molecular Imaging of Vascular Endothelial Growth Factor Receptors in Graft Arteriosclerosis
    Zhang, Jiasheng
    Razavian, Mahmoud
    Tavakoli, Sina
    Nie, Lei
    Tellides, George
    Backer, Joseph M.
    Backer, Marina V.
    Bender, Jeffrey R.
    Sadeghi, Mehran M.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2012, 32 (08) : 1849 - U320
  • [5] Expression of vascular endothelial growth factor and hypoxia-inducible factor 1α in the myocardium
    Takahashi, T
    Sugishita, Y
    Shimizu, T
    Yao, A
    Harada, K
    Nagai, R
    SIGNAL TRANSDUCTION AND CARDIAC HYPERTROPHY, 2003, 7 : 439 - 447
  • [6] Vascular endothelial growth factor A and C gene expression in endometriosis
    Takehara, M
    Ueda, M
    Yamashita, Y
    Terai, Y
    Hung, YC
    Ueki, M
    HUMAN PATHOLOGY, 2004, 35 (11) : 1369 - 1375
  • [7] Vascular endothelial growth factor expression following ischemic conditioning of the gastric conduit
    Bludau, M.
    Hoelscher, A. H.
    Vallboehmer, D.
    Metzger, R.
    Bollschweiler, E.
    Schroeder, W.
    DISEASES OF THE ESOPHAGUS, 2013, 26 (08): : 847 - 852
  • [8] Vascular endothelial growth factor expression under ischemic stress in human meningiomas
    Park, K
    Kim, JH
    Nam, DH
    Lee, JI
    Kim, JS
    Hong, SC
    Shin, HJ
    Eoh, W
    Park, K
    NEUROSCIENCE LETTERS, 2000, 283 (01) : 45 - 48
  • [9] Ischemic preconditioning upregulates vascular endothelial growth factor mRNA expression and neovascularization via nuclear translocation of protein kinase C ε in the rat ischemic myocardium
    Kawata, H
    Yoshida, K
    Kawamoto, A
    Kurioka, H
    Takase, E
    Sasaki, Y
    Hatanaka, K
    Kobayashi, M
    Ueyama, T
    Hashimoto, T
    Dohi, K
    CIRCULATION RESEARCH, 2001, 88 (07) : 696 - 704
  • [10] Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration
    Iwaguro, H
    Yamaguchi, J
    Kalka, C
    Murasawa, S
    Masuda, H
    Hayashi, S
    Silver, M
    Li, T
    Isner, JM
    Asahara, T
    CIRCULATION, 2002, 105 (06) : 732 - 738