Solid-state laser intra-cavity photothermal gas sensor

被引:17
作者
Dudzik, Grzegorz [1 ]
Krzempek, Karol [1 ]
Abramski, Krzysztof [1 ]
Wysocki, Gerard [2 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Elect, Laser & Fiber Elect Grp, PL-50370 Wroclaw, Poland
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
关键词
Photothermal gas sensor; Intracavity gas detection; Solid-state laser; Heterodyne gas detection; ENHANCED PHOTOACOUSTIC-SPECTROSCOPY; ABSORPTION;
D O I
10.1016/j.snb.2020.129072
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Compact, rugged and sensitive laser-based trace gas sensors are in high demand for science and commercial applications. To ensure high sensitivities, laser spectroscopic sensors often use extended interaction paths (e.g. multi-pass cells), which significantly increases their size, weight and susceptibility to misalignment. Herein, we present a novel, miniaturized photothermal gas sensor, where the gas sample is measured inside the resonator of a monolithic microchip solid-state laser operating at 1064 nm. The photothermal-induced gas refractive index variations are directly translated to a solid-state laser frequency shift, which is detected as a beatnote modulation in a heterodyne detection scheme. The system provides high sensitivity to refractive index changes at the level of similar to 1.1 x 10(-12) within ultra-short intra-cavity interaction path-length of 1.5 mm, which enables trace-gas measurements in a sensing volume of only 4 mu l. In a proof-of-concept experiment using dry carbon dioxide as a test sample the sensor reached a minimum detection limit of 350 ppbv for a 100 s averaging time and NNEA = 4.1 x 10(-8) [W cm(-1) Hz(-1/2)].
引用
收藏
页数:6
相关论文
共 22 条
[1]  
Bialkowski S.E., 1996, Photothermal spectroscopy methods for chemical analysis, P177
[2]   Gas-phase broadband spectroscopy using active sources: progress, status, and applications [J].
Cossel, Kevin C. ;
Waxman, Eleanor M. ;
Finneran, Ian A. ;
Blake, Geoffrey A. ;
Ye, Jun ;
Newbury, Nathan R. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2017, 34 (01) :104-129
[3]   OPTICAL HETERODYNE DETECTION [J].
DELANGE, OE .
IEEE SPECTRUM, 1968, 5 (10) :77-&
[4]   QEPAS spectrophones: design, optimization, and performance [J].
Dong, L. ;
Kosterev, A. A. ;
Thomazy, D. ;
Tittel, F. K. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 100 (03) :627-635
[5]  
Fong KL, 1999, IEEE T CIRCUITS-II, V46, P231, DOI 10.1109/82.754857
[6]   Compact, circular, and optically stable multipass cell for mobile laser absorption spectroscopy [J].
Graf, Manuel ;
Emmenegger, Lukas ;
Tuzson, Bela .
OPTICS LETTERS, 2018, 43 (11) :2434-2437
[7]   Advances in Mid-Infrared Spectroscopy for Chemical Analysis [J].
Haas, Julian ;
Mizaikoff, Boris .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 9, 2016, 9 :45-68
[8]  
Harren F.J., 2006, PHOTOACOUSTIC SPECTR, P2203
[9]   Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell [J].
He, Ying ;
Ma, Yufei ;
Tong, Yao ;
Yu, Xin ;
Tittel, Frank K. .
OPTICS LETTERS, 2019, 44 (08) :1904-1907
[10]   Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range [J].
Jin, Wei ;
Cao, Yingchun ;
Yang, Fan ;
Ho, Hoi Lut .
NATURE COMMUNICATIONS, 2015, 6