Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress

被引:819
|
作者
Blum, A. [1 ]
机构
[1] Plantstress Com, Tel Aviv, Israel
关键词
Water-use efficiency; Drought resistance; Transpiration; Stomata; Grain yield; Harvest index; Plant breeding; Soil moisture; Roots; CARBON-ISOTOPE DISCRIMINATION; HIGHER STOMATAL CONDUCTANCE; ZEA-MAYS L; GRAIN-YIELD; DURUM-WHEAT; TRANSPIRATION EFFICIENCY; OSMOTIC ADJUSTMENT; GAS-EXCHANGE; QTL ANALYSIS; PIMA COTTON;
D O I
10.1016/j.fcr.2009.03.009
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Water-use efficiency (WUE) is often considered an important determinant of yield under stress and even as a component of crop drought resistance. It has been used to imply that rainfed plant production can be increased per unit water used, resulting in "more crop per drop". This opinionated review argues that selection for high WUE in breeding for water-limited conditions will most likely lead, under most conditions, to reduced yield and reduced drought resistance. As long as the biochemistry of photosynthesis cannot be improved genetically, greater genotypic transpiration efficiency (TE) and WUE are driven mainly by plant traits that reduce transpiration and crop water-use, processes which are crucially important for plant production. Since biomass production is tightly linked to transpiration. breeding for maximized soil moisture capture for transpiration is the most important target for yield improvement under drought stress. Effective use of water (EUW) implies maximal soil moisture capture for transpiration which also involves reduced non-stomatal transpiration and minimal water loss by soil evaporation. Even osmotic adjustment which is a major stress adaptive trait in crop plants is recognized as enhancing soil moisture capture and transpiration. High harvest index (HI) expresses successful plant reproduction and yield in terms of reproductive functions and assimilate partitioning towards reproduction. in most rainfed environments crop water deficit develops during the reproductive growth stage thus reducing HI. EUW by way of improving plant water status helps sustain assimilate partitions and reproductive Success. It is concluded that EUW is a major target for yield improvement in water-limited environments. It is not a coincidence that EUW is an inverse acronym of WUE because very often high WUE is achieved at the expense of reduced EUW. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 123
页数:5
相关论文
共 50 条
  • [21] High water use efficiency due to maintenance of photosynthetic capacity in sorghum under water stress
    Al-Salman, Yazen
    Cano, Francisco Javier
    Mace, Emma
    Jordan, David
    Groszmann, Michael
    Ghannoum, Oula
    JOURNAL OF EXPERIMENTAL BOTANY, 2024, 75 (21) : 6778 - 6795
  • [22] Effects of deficit irrigation on yield, yield components and water-use efficiency of winter wheat
    Zhang, XY
    Pei, D
    Chen, SY
    JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 : 8 - 8
  • [23] Contrasting Water-Use Efficiency (WUE) Responses of a Potato Mapping Population and Capability of Modified Ball-Berry Model to Predict Stomatal Conductance and WUE Measured at Different Environmental Conditions
    Kaminski, K. P.
    Korup, K.
    Kristensen, K.
    Nielsen, K. L.
    Liu, F.
    Topbjerg, H. B.
    Kirk, H. G.
    Andersen, M. N.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2015, 201 (02) : 81 - 94
  • [24] Association between water-use efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions
    Fotovat, R.
    Valizadeh, M.
    Toorchi, M.
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2007, 5 (3-4): : 225 - 227
  • [25] Magnesium deficiency decreases biomass water-use efficiency and increases leaf water-use efficiency and oxidative stress in barley plants
    Traenkner, Merle
    Jakli, Balint
    Tavakol, Ershad
    Geilfus, Christoph-Martin
    Cakmak, Ismail
    Dittert, Klaus
    Senbayram, Mehmet
    PLANT AND SOIL, 2016, 406 (1-2) : 409 - 423
  • [26] Carbon Isotope Discrimination and Water-Use Efficiency in Crotalaria Cover Crops under Moderate Water Deficit
    Berriel, Veronica
    Perdomo, Carlos
    Monza, Jorge
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2020, 20 (02) : 537 - 545
  • [27] Does root pruning increase yield and water-use efficiency of winter wheat?
    Fang, Yan
    Xu, Bingcheng
    Turner, Neil C.
    Li, Fengmin
    CROP & PASTURE SCIENCE, 2010, 61 (11) : 899 - 910
  • [28] Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China
    Zhang, Guoqiang
    Shen, Dongping
    Ming, Bo
    Xie, Ruizhi
    Jin, Xiuliang
    Liu, Chaowei
    Hou, Peng
    Xue, Jun
    Chen, Jianglu
    Zhang, Wanxu
    Liu, Wanmao
    Wang, Keru
    Li, Shaokun
    CROP JOURNAL, 2019, 7 (03): : 322 - 334
  • [29] Consequences of moderate drought stress on the net photosynthesis, water-use efficiency and biomass production of three poplar clones
    Luettschwager, Dietmar
    Ewald, Dietrich
    Alia, Lucia Atanet
    ACTA PHYSIOLOGIAE PLANTARUM, 2016, 38 (01) : 1 - 6
  • [30] INFLUENCE OF WATER-STRESS ON PHOTOSYNTHESIS, TRANSPIRATION, WATER-USE EFFICIENCY AND YIELD OF BRASSICA-JUNCEA L
    KUMAR, A
    SINGH, DP
    SINGH, P
    FIELD CROPS RESEARCH, 1994, 37 (02) : 95 - 101