Molecular Characterization of Magnesium Chelatase in Soybean [Glycine max (L.) Merr.]

被引:27
|
作者
Zhang, Dan [1 ]
Chang, Enjie [1 ]
Yu, Xiaoxia [1 ]
Chen, Yonghuan [1 ]
Yang, Qinshuai [1 ]
Cao, Yanting [1 ]
Li, Xiukun [1 ]
Wang, Yuhua [1 ]
Fu, Aigen [1 ]
Xu, Min [1 ]
机构
[1] Northwest Univ, Coliege Life Sci, Chinese Educ Ministrys Key Lab Western Resources, Key Lab Biotechnol Shaanxi Prov, Xian, Shaanxi, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2018年 / 9卷
基金
国家重点研发计划;
关键词
Glycine max; soybean; chlorophyll synthesis; magnesium chelatase; GmChll; GmChlD; GmChlH; MG-CHELATASE; TETRAPYRROLE BIOSYNTHESIS; H-SUBUNIT; CHLOROPHYLL BIOSYNTHESIS; ESCHERICHIA-COLI; GENE DUPLICATION; STRESS-RESPONSE; ATPASE ACTIVITY; PROTEIN; EXPRESSION;
D O I
10.3389/fpls.2018.00720
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soybean (Glycine max) seed yields rely on the efficiency of photosynthesis, which is poorly understood in soybean. Chlorophyll, the major light harvesting pigment, is crucial for chloroplast biogenesis and photosynthesis. Magnesium chelatase catalyzes the insertion of Mg2+ into protoporphyrin IX in the first committed and key regulatory step of chlorophyll biosynthesis. It consists of three types of subunits, ChlI, ChlD, and ChlH. To gain a better knowledge of chlorophyll biosynthesis in soybean, we analyzed soybean Mg-chelatase subunits and their encoding genes. Soybean genome harbors 4 GmChlI genes, 2 GmChlD genes, and 3 GmChlH genes, likely evolved from two rounds of gene duplication events. The qRT-PCR analysis revealed that GmChlI, GmChlD, and GmChlH genes predominantly expressed in photosynthetic tissues, but the expression levels among paralogs are different. In silicon promoter analyses revealed these genes harbor different cis-regulatory elements in their promoter regions, suggesting they could differentially respond to various environmental and developmental signals. Subcellular localization analyses illustrated that GmChlI, GmChlD, and GmChlH isoforms are all localized in chloroplast, consistent with their functions. Yeast two hybrid and bimolecular fluorescence complementation (BiFC) assays showed each isoform has a potential to be assembled into the Mg-chelatase holocomplex. We expressed each GmChlI, GmChlD, and GmChlH isoform in Arabidopsis corresponding mutants, and results showed that 4 GmChlI and 2 GmChlD isoforms and GmChlH1 could rescue the severe phenotype of Arabidopsis mutants, indicating that they maintain normal biochemical functions in vivo. However, GmChlH2 and GmChlH3 could not completely rescue the chlorotic phenotype of Arabidopsis gun5-2 mutant, suggesting that the functions of these two proteins could be different from GmChlH1. Considering the differences shown on primary sequences, biochemical functions, and gene expression profiles, we conclude that the paralogs of each soybean Mg-chelatase subunit have diverged more or less during evolution. Soybean could have developed a complex regulatory mechanism to control chlorophyll content to adapt to different developmental and environmental situations.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Recombination hotspots in soybean [Glycine max (L.) Merr.]
    McConaughy, Samantha
    Amundsen, Keenan
    Song, Qijian
    Pantalone, Vince
    Hyten, David
    G3-GENES GENOMES GENETICS, 2023, 13 (06):
  • [2] Soybean (Glycine max L. Merr.) seed composition response to soil flooding stress
    VanToai, Tara T.
    Lee, Jeong-Dong
    Goulart, Patricia F. P.
    Shannon, J. Grover
    Alves, J. Donizeti
    Nguyen, Henry T.
    Yu, Oliver
    Rahman, Mohammed
    Islam, Rafiq
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2012, 10 (01): : 795 - 801
  • [3] Isolation and Functional Characterization of a SERK Gene from Soybean (Glycine max (L.) Merr.)
    Yang, Chao
    Zhao, Tuanjie
    Yu, Deyue
    Gai, Junyi
    PLANT MOLECULAR BIOLOGY REPORTER, 2011, 29 (02) : 334 - 344
  • [4] Molecular evolution of glycinin and β-conglycinin gene families in soybean (Glycine max L. Merr.)
    Li, C.
    Zhang, Y-M
    HEREDITY, 2011, 106 (04) : 633 - 641
  • [5] Isolation and characterization of phytochemical constituents from soybean (Glycine max L. Merr.)
    Lee, Jin Hwan
    Baek, In-Youl
    Kang, Nam Suk
    Ko, Jong Min
    Han, Won-Young
    Kim, Hyun-Tae
    Oh, Ki-Won
    Suh, Duck-Yong
    Ha, Tae Joung
    Park, Ki Hun
    FOOD SCIENCE AND BIOTECHNOLOGY, 2006, 15 (03) : 392 - 398
  • [6] Evaluation of Soybean [Glycine max (L.) Merr.] F(1 )Hybrids
    Perez, Paola T.
    Cianzio, Silvia R.
    Palmer, Reid G.
    JOURNAL OF CROP IMPROVEMENT, 2009, 23 (01) : 1 - 18
  • [7] Tagging the juvenile locus in soybean [Glycine max (L.) Merr.] with molecular markers
    Cairo, CA
    Stein, J
    Delgado, L
    Bortolotti, S
    Guelman, SA
    Ortiz, JPA
    Morandi, EN
    EUPHYTICA, 2002, 124 (03) : 387 - 395
  • [8] Soybean (Glycine max (L.) Merr.) cultivar tolerance to sulfentrazone
    Hulting, AG
    Wax, LM
    Nelson, RL
    Simmons, FW
    CROP PROTECTION, 2001, 20 (08) : 679 - 683
  • [9] Androgenesis in soybean (Glycine max (L.) Merr.): a critical revisit
    Ayyagari Ramlal
    Sahil Mehta
    Aparna Nautiyal
    Pooja Baweja
    Deepshikha Shivam
    S. K. Sharma
    Roshni Lal
    Dhandapani Vijayan
    Sreeramanan Raju
    Ambika Subramaniam
    In Vitro Cellular & Developmental Biology - Plant, 2024, 60 : 1 - 15
  • [10] SSR diversity of vegetable soybean [Glycine max (L.) merr.]
    Mimura, Makiko
    Coyne, Clarice J.
    Bambuck, Marie W.
    Lumpkin, Thomas A.
    GENETIC RESOURCES AND CROP EVOLUTION, 2007, 54 (03) : 497 - 508