On the incidence of Kelvin-Helmholtz instability for mass exchange process at the Earth's magnetopause

被引:11
作者
Smets, R [1 ]
Delcourt, D
Chanteur, G
Moore, TE
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] CNRS, CETP, Velizy Villacoublay, France
[3] CNRS, CETP, St Maur des Fosses, France
关键词
magnetospheric physics; magnetopause; cusp and boundary layers; MHD waves and instabilities; space plasma physics; numerical simulation studies;
D O I
10.5194/angeo-20-757-2002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Due to the velocity shear imposed by the solar wind flowing around the magnetosphere. the magnetopause flanks are preferred regions for the development of a Kelvin-Helmholtz instability. Since its efficiency for momentum transfer across the magnetopause has already been established, we investigate its efficiency for mass transfer. Using nonresistive magnetohydrodynamic simulations to describe the magnetic field shape in the instability region, we use test-particle calculations to analyse particle dynamics. We show that the magnetopause thickness and the instability wavelength are too large to lead to nonadiabatic motion of thermal electrons from the magnetosphere. On the other hand, the large mass of H+, He+ and O+ ions leads to such nonadiabatic motion and we thus propose the Kelvin-Helmholtz instability as a mechanism for either magnetospheric ion leakage into the magnetosheath or solar wind ion entry in the magnetosphere, Test-particle calculations are performed in a dimensionless way to discuss the case of each type of ion. The crossing rate is of the order of 10%. This rate is anti-correlated with shear velocity and instability wavelength. It increases with the magnetic shear. The crossing regions at the magnetopause are narrow and localized in the vicinity of the instability wave front. As a Kelvin-Helmholtz instability allows for mass transfer through the magnetopause without any resistivity, we propose it as an alternate process to reconnection for mass transfer through magnetic boundaries.
引用
收藏
页码:757 / 769
页数:13
相关论文
共 50 条
  • [41] Parallel Electrostatic Waves Associated With Turbulent Plasma Mixing in the Kelvin-Helmholtz Instability
    Wilder, F. D.
    Schwartz, S. J.
    Ergun, R. E.
    Eriksson, S.
    Ahmadi, N.
    Chasapis, A.
    Newman, D. L.
    Burch, J. L.
    Torbert, R. B.
    Strangeway, R. J.
    Giles, B. L.
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (14)
  • [42] Effect of Transverse Magnetic Field on Kelvin-Helmholtz Instability in the Presence of a Radiation Field
    Peng, Hang
    Yu, Fang
    Huliuta, Yauheni
    Wei, Lai
    Wang, Zheng-Xiong
    Liu, Yue
    ASTROPHYSICAL JOURNAL, 2024, 970 (01)
  • [43] A simulation and theoretical study of energy transport in the event of MHD Kelvin-Helmholtz instability
    Lai, S. H.
    Lyu, L. H.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
  • [44] Velocity shear Kelvin-Helmholtz instability with inhomogeneous DC electric field in the magnetosphere of Saturn
    Kandpal, Praveen
    Kaur, Rajbir
    Pandey, R. S.
    ADVANCES IN SPACE RESEARCH, 2018, 61 (01) : 581 - 592
  • [45] Comparison Between Fluid Simulation With Test Particles and Hybrid Simulation for the Kelvin-Helmholtz Instability
    Ma, Xuanye
    Delamere, Peter A.
    Nykyri, Katariina
    Burkholder, Brandon
    Neupane, Bishwa
    Rice, Rachel C.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (08) : 6654 - 6668
  • [46] Cassini observations of a Kelvin-Helmholtz vortex in Saturn's outer magnetosphere
    Masters, A.
    Achilleos, N.
    Kivelson, M. G.
    Sergis, N.
    Dougherty, M. K.
    Thomsen, M. F.
    Arridge, C. S.
    Krimigis, S. M.
    McAndrews, H. J.
    Kanani, S. J.
    Krupp, N.
    Coates, A. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
  • [47] Kelvin-Helmholtz-Related Turbulent Heating at Saturn's Magnetopause Boundary
    Delamere, P. A.
    Ng, C. S.
    Damiano, P. A.
    Neupane, B. R.
    Johnson, J. R.
    Burkholder, B.
    Ma, X.
    Nykyri, K.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (02)
  • [48] The Occurrence and Prevalence of Magnetic Reconnection in the Kelvin-Helmholtz Instability Under Various Solar Wind Conditions
    Wilder, F. D.
    King, A.
    Gove, D.
    Eriksson, S.
    Ahmadi, N.
    Workman, T. L.
    Ergun, R. E.
    Burch, J. L.
    Torbert, R. B.
    Giles, B. L.
    Strangeway, R. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2023, 128 (10)
  • [49] Signatures of complex magnetic topologies from multiple reconnection sites induced by Kelvin-Helmholtz instability
    Vernisse, Y.
    Lavraud, B.
    Eriksson, S.
    Gershman, D. J.
    Dorelli, J.
    Pollock, C.
    Giles, B.
    Aunai, N.
    Avanov, L.
    Burch, J.
    Chandler, M.
    Coffey, V.
    Dargent, J.
    Ergun, R. E.
    Farrugia, C. J.
    Genot, V.
    Graham, D. B.
    Hasegawa, H.
    Jacquey, C.
    Kacem, I.
    Khotyaintsev, Y.
    Li, W.
    Magnes, W.
    Marchaudon, A.
    Moore, T.
    Paterson, W.
    Penou, E.
    Phan, T. D.
    Retino, A.
    Russell, C. T.
    Saito, Y.
    Sauvaud, J. -A.
    Torbert, R.
    Wilder, F. D.
    Yokota, S.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (10) : 9926 - 9939
  • [50] Kelvin-Helmholtz Instability Associated With Reconnection and Ultra Low Frequency Waves at the Ground: A Case Study
    Kronberg, E. A.
    Gorman, J.
    Nykyri, K.
    Smirnov, A. G.
    Gjerloev, J. W.
    Grigorenko, E. E.
    Kozak, L. V.
    Ma, X.
    Trattner, K. J.
    Friel, M.
    FRONTIERS IN PHYSICS, 2021, 9