Temporally Consistent Semantic Video Editing

被引:16
作者
Xu, Yiran [1 ]
AlBahar, Badour [2 ]
Huang, Jia-Bin [1 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] Virginia Tech, Blacksburg, VA USA
来源
COMPUTER VISION - ECCV 2022, PT XV | 2022年 / 13675卷
关键词
Video editing; GAN editing; Video consistency;
D O I
10.1007/978-3-031-19784-0_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative adversarial networks (GANs) have demonstrated impressive image generation quality and semantic editing capability of real images, e.g., changing object classes, modifying attributes, or transferring styles. However, applying these GAN-based editing to a video independently for each frame inevitably results in temporal flickering artifacts. We present a simple yet effective method to facilitate temporally coherent video editing. Our core idea is to minimize the temporal photometric inconsistency by optimizing both the latent code and the pre-trained generator. We evaluate the quality of our editing on different domains and GAN inversion techniques and show favorable results against the baselines.
引用
收藏
页码:357 / 374
页数:18
相关论文
共 64 条
[61]  
Yuksel OK, 2021, Arxiv, DOI arXiv:2104.00820
[62]   The Unreasonable Effectiveness of Deep Features as a Perceptual Metric [J].
Zhang, Richard ;
Isola, Phillip ;
Efros, Alexei A. ;
Shechtman, Eli ;
Wang, Oliver .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :586-595
[63]   In-Domain GAN Inversion for Real Image Editing [J].
Zhu, Jiapeng ;
Shen, Yujun ;
Zhao, Deli ;
Zhou, Bolei .
COMPUTER VISION - ECCV 2020, PT XVII, 2020, 12362 :592-608
[64]   Generative Visual Manipulation on the Natural Image Manifold [J].
Zhu, Jun-Yan ;
Kraehenbuehl, Philipp ;
Shechtman, Eli ;
Efros, Alexei A. .
COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 :597-613