Stimulus-responsive polymeric nanogels as smart drug delivery systems

被引:300
作者
Hajebi, Sakineh [1 ,2 ]
Rabiee, Navid [3 ]
Bagherzadeh, Mojtaba [3 ]
Ahmadi, Sepideh [4 ,5 ,6 ]
Rabiee, Mohammad [7 ]
Roghani-Mamaqani, Hossein [1 ,2 ]
Tahriri, Mohammadreza [8 ]
Tayebi, Lobat [8 ]
Hamblin, Michael R. [9 ,10 ,11 ,12 ,13 ]
机构
[1] Sahand Univ Technol, Dept Polymer Engn, POB 51335-1996, Tabriz, Iran
[2] Sahand Univ Technol, Inst Polymer Mat, POB 51335-1996, Tabriz, Iran
[3] Sharif Univ Technol, Dept Chem, Tehran, Iran
[4] Shahid Beheshti Univ Med Sci, Sch Adv Technol Med, Dept Biotechnol, Student Res Comm, Tehran, Iran
[5] Shahid Beheshti Univ Med Sci, Cellular & Mol Biol Res Ctr, Tehran, Iran
[6] Adv Technol Res Grp, Div Dis, Tehran, Iran
[7] Amirkabir Univ Technol, Dept Biomed Engn, Biomat Grp, Tehran, Iran
[8] Marquette Univ, Sch Dent, Milwaukee, WI 53233 USA
[9] Massachusetts Gen Hosp, Wellman Ctr Photomed, Boston, MA 02114 USA
[10] Harvard Med Sch, Dept Dermatol, Boston, MA 02115 USA
[11] Harvard MIT Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[12] Harvard Med Sch, Massachusetts Gen Hosp, Wellman Ctr Photomed, Dept Dermatol, BAR 414, Boston, MA 02115 USA
[13] Holmes Barns, Melrose TD6 0EL, Scottish Border, Scotland
关键词
Nanogels; Stimulus-responsive; Drug delivery; Smart drug release; Cancer treatment; HYALURONIC-ACID NANOGELS; SELF-ASSEMBLED NANOGEL; CROSS-LINKED NANOGELS; ONE-POT SYNTHESIS; INTRACELLULAR DELIVERY; CONTROLLED-RELEASE; BIODEGRADABLE NANOGELS; BUTYL METHACRYLATE; LOADING EFFICIENCY; CATIONIC NANOGELS;
D O I
10.1016/j.actbio.2019.05.018
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Nanogels are three-dimensional nanoscale networks formed by physically or chemically cross-linking polymers. Nanogels have been explored as drug delivery systems due to their advantageous properties, such as biocompatibility, high stability, tunable particle size, drug loading capacity, and possible modification of the surface for active targeting by attaching ligands that recognize cognate receptors on the target cells or tissues. Nanogels can be designed to be stimulus responsive, and react to internal or external stimuli such as pH, temperature, light and redox, thus resulting in the controlled release of loaded drugs. This "smart" targeting ability prevents drug accumulation in non-target tissues and minimizes the side effects of the drug. This review aims to provide an introduction to nanogels, their preparation methods, and to discuss the design of various stimulus-responsive nanogels that are able to provide controlled drug release in response to particular stimuli. Statement of Significance Smart and stimulus-responsive drug delivery is a rapidly growing area of biomaterial research. The explosive rise in nanotechnology and nanomedicine, has provided a host of nanoparticles and nanovehicles which may bewilder the uninitiated reader. This review will lay out the evidence that polymeric nanogels have an important role to play in the design of innovative drug delivery vehicles that respond to internal and external stimuli such as temperature, pH, redox, and light. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 138 条
[1]   Controlling the size and swellability of stimuli-responsive polyvinylpyrrolidone-poly(acrylic acid) nanogels synthesized by gamma radiation-induced template polymerization [J].
Abd El-Rehim, Hassan A. ;
Hegazy, El-Sayed A. ;
Hamed, Ashraf A. ;
Swilem, Ahmed E. .
EUROPEAN POLYMER JOURNAL, 2013, 49 (03) :601-612
[2]   Chemically crosslinked nanogels of PEGylated poly ethyleneimine (L-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: Cytocompatibility, cellular delivery and antitumor activity in resistant cells [J].
Abolmaali, Samira Sadat ;
Tamaddon, Ali Mohammad ;
Mohammadi, Samaneh ;
Amoozgar, Zohreh ;
Dinarvand, Rasoul .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 62 :897-907
[3]   Hydrogel: Preparation, characterization, and applications: A review [J].
Ahmed, Enas M. .
JOURNAL OF ADVANCED RESEARCH, 2015, 6 (02) :105-121
[4]   Self-assembled cationic nanogels for intracellular protein delivery [J].
Ayame, Hirohito ;
Morimoto, Nobuyuki ;
Akiyoshi, Kazunari .
BIOCONJUGATE CHEMISTRY, 2008, 19 (04) :882-890
[5]   Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death [J].
Bae, Ki Hyun ;
Mok, Hyejung ;
Park, Tae Gwan .
BIOMATERIALS, 2008, 29 (23) :3376-3383
[6]   ON OFF THERMOCONTROL OF SOLUTE TRANSPORT .1. TEMPERATURE-DEPENDENCE OF SWELLING OF N-ISOPROPYLACRYLAMIDE NETWORKS MODIFIED WITH HYDROPHOBIC COMPONENTS IN WATER [J].
BAE, YH ;
OKANO, T ;
KIM, SW .
PHARMACEUTICAL RESEARCH, 1991, 8 (04) :531-537
[7]   Synthesis of a novel thermo/pH sensitive nanogel based on salep modified graphene oxide for drug release [J].
Bardajee, Ghasem Rezanejade ;
Hooshyar, Zari ;
Farsi, Maryam ;
Mobini, Akram ;
Sang, Golnaz .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 72 :558-565
[8]   Chitosan-based hydrogels for controlled, localized drug delivery [J].
Bhattarai, Narayan ;
Gunn, Jonathan ;
Zhang, Miqin .
ADVANCED DRUG DELIVERY REVIEWS, 2010, 62 (01) :83-99
[9]   Size-controlled synthesis of monodisperse core/shell nanogels [J].
Blackburn, William H. ;
Lyon, L. Andrew .
COLLOID AND POLYMER SCIENCE, 2008, 286 (05) :563-569
[10]   Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery [J].
Brannigan, Ruairi P. ;
Khutoryanskiy, Vitaliy V. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2017, 155 :538-543