Reduced graphene oxide decorated SnO2/BiVO4 photoanode for photoelectrochemical water splitting

被引:35
|
作者
Bai, Shouli [1 ]
Tian, Ke [1 ]
Meng, Jonathan Chenhui [2 ]
Zhao, Yingying [1 ]
Sun, Jianhua [3 ]
Zhang, Kewei [4 ]
Feng, Yongjun [1 ]
Luo, Ruixian [1 ]
Li, Dianqing [1 ]
Chen, Aifan [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing Key Lab Environm Harmful Chem Anal, Beijing 100029, Peoples R China
[2] Phillips Exeter Acad, Exeter, NH 03833 USA
[3] Guangxi Univ, Sch Chem & Chem Engn, Guangxi Key Lab Petrochem Resource Proc & Proc In, Nanning 530004, Peoples R China
[4] Qingdao Univ, State Key Lab Biofibers & Ecotext, Collaborat Innovat Ctr Shandong Marine Biobased F, Coll Mat Sci & Engn,Inst Marine Biobased Mat, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Photoelectrochemical water splitting; Semiconductor heterojunction; SnO2; nanorods; BiVO4; Reduced graphene oxide; ENHANCED CHARGE SEPARATION; HETEROJUNCTION PHOTOANODE; HYDROGEN EVOLUTION; COMPOSITE; ZNO; PERFORMANCE; FABRICATION; EFFICIENCY; FILMS; AREA;
D O I
10.1016/j.jallcom.2020.156780
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photoelectrochemical (PEC) water splitting technology offers a sound strategy for the production of chemical energy using abundant solar energy. Herein, a ternary photoanode of SnO2/BiVO4/rGO was fabricated by plain chemical vapor deposition (CVD) and metal-organic decomposition followed by spin-coated rGO on the SnO2/BiVO4 junction. The ternary photoanode yields the highest photocurrent density of 2.05 mA cm(-2) at 1.23 V vs. RHE, which is 3.73 times of the BiVO4 photoanode (0.55 mA cm(-2)). The incident photon-to-electron conversion efficiency (IPCE) of the ternary photoanode is 2.47 times that of the BiVO4 photoanode at 400 nm, and the onset potential exhibits a cathodic shift of similar to 300 mV. This enhancement can be attributed to the formation of n-n heterojunctions between the SnO2 and BiVO4, and decoration of rGO on said heterojunctions because they synergistically improve the absorption of visible light, enhance the efficiency of charge separation, and accelerate electron transfer at the electrode/electrolyte interface. (C) 2020 Published by Elsevier B.V.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Photothermal effect and hole transport properties of polyaniline for enhanced photoelectrochemical water splitting of BiVO4 photoanode
    Li, Haolun
    Lyu, Mingxin
    Chen, Pengliang
    Tian, Yingnan
    Kang, Jianye
    Lai, Yanhua
    Cheng, Xingxing
    Dong, Zhen
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 684 : 758 - 768
  • [22] Dual modification of BiVO4 photoanode for synergistically boosting photoelectrochemical water splitting
    Yin, Dan
    Ning, Xingming
    Zhang, Qi
    Du, Peiyao
    Lu, Xiaoquan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 646 : 238 - 244
  • [23] An integrating photoanode consisting of BiVO4, rGO and LDH for photoelectrochemical water splitting
    Sun, Lixia
    Sun, Jianhua
    Yang, Xiaojun
    Bai, Shouli
    Feng, Yongjun
    Luo, Ruixian
    Li, Dianqing
    Chen, Aifan
    DALTON TRANSACTIONS, 2019, 48 (42) : 16091 - 16098
  • [24] Mo-doped BiVO4@reduced graphene oxide composite as an efficient photoanode for photoelectrochemical water splitting
    Subramanyam, Palyam
    Vinodkumar, T.
    Nepak, Devadutta
    Deepa, Melepurath
    Subrahmanyam, Challapalli
    CATALYSIS TODAY, 2019, 325 : 73 - 80
  • [25] Ni-Doped BiVO4 photoanode for efficient photoelectrochemical water splitting
    Chen, Meihong
    Chang, Xiaobo
    Li, Can
    Wang, Hongqiang
    Jia, Lichao
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 640 : 162 - 169
  • [26] Low-Cost Oriented Hierarchical Growth of BiVO4/rGO/NiFe Nanoarrays Photoanode for Photoelectrochemical Water Splitting
    Han, Xiao
    Wei, Yankuan
    Su, Jinzhan
    Zhao, Yan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (11): : 14695 - +
  • [27] Fabrication of Zn-MOF decorated BiVO4 photoanode for water splitting
    Bai, Hongye
    Wang, Fengfeng
    You, Zhonghua
    Sun, Dongtian
    Cui, Jianguo
    Fan, Weiqiang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 640
  • [28] Efficient photoelectrochemical water oxidation of cobalt phthalocyanine decorated BiVO4 photoanode by improving kinetics
    Shen, Xiaoliang
    Zhao, Long
    Fan, Weiqiang
    Ren, Jinshen
    Wang, Qi
    Wang, Aijian
    Shang, Danhong
    Zhu, Weihua
    APPLIED SURFACE SCIENCE, 2021, 564
  • [29] BiVO4 photoanode decorated with cobalt-manganese layered double hydroxides for enhanced photoelectrochemical water oxidation
    Zhao, Fei
    Li, Na
    Wu, Yun
    Wen, Xiaojiang
    Zhao, Qiang
    Liu, Guang
    Li, Jinping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 31902 - 31912
  • [30] Heterojunction photoanode of SnO2 and Mo-doped BiVO4 for boosting photoelectrochemical performance and tetracycline hydrochloride degradation
    Kahng, Soojin
    Kim, Jung Hyeun
    CHEMOSPHERE, 2022, 291