Charge Trap Transistor (CTT): An Embedded Fully Logic-Compatible Multiple-Time Programmable Non-Volatile Memory Element for High-k-Metal-Gate CMOS Technologies

被引:34
作者
Khan, Faraz [1 ,2 ]
Cartier, Eduard [3 ]
Woo, Jason C. S. [1 ]
Iyer, Subramanian S. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, CHIPS, Los Angeles, CA 90095 USA
[2] Global Foundries, Adv Technol Dev, Malta, NY 12020 USA
[3] IBM Res, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
High-k-metal-gate; CMOS; embedded non-volatile memory;
D O I
10.1109/LED.2016.2633490
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The availability of on-chip non-volatile memory for advanced high-k-metal-gate CMOS technology nodes has been limited due to integration and scaling challenges as well as operational voltage incompatibilities, while its need continues to grow rapidly in modern high-performance systems. By exploiting intrinsic device self-heatingenhancedcharge trapping in as fabricated highk- metal-gate logic devices, we introduce a unique multipletime programmable embedded non-volatile memory element, called the 'charge trap transistor' (CTT), for high-k-metal-gateCMOS technologies. Functionality and feasibility of using CTT memory devices have been demonstrated on 22 nm planar and 14 nm FinFET technology platforms, including fully functional product prototype memory arrays. These transistor memory devices offer high density (similar to 0.144 mu m(2)/bit for 22 nm and similar to 0.082 mu m(2)/bit for 14 nm technology), logic voltage compatible and low peak power operation (similar to 4mW), and excellent retention for a fully integrated and scalable embedded non-volatile memory without added process complexity or masks.
引用
收藏
页码:44 / 47
页数:4
相关论文
共 17 条
  • [1] Mechanism of electron trapping and characteristics of traps in HfO2 gate stacks
    Bersuker, Gennadi
    Sim, J. H.
    Park, Chang Seo
    Young, Chadwin D.
    Nadkarni, Suvid V.
    Choi, Rino
    Lee, Byoung Hun
    [J]. IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2007, 7 (01) : 138 - 145
  • [2] Cartier E, 2006, INT EL DEVICES MEET, P57
  • [3] Stress-Induced Leakage Current and Defect Generation in nFETs with HfO2/TiN Gate Stacks during Positive-Bias Temperature Stress
    Cartier, Eduard
    Kerber, Andreas
    [J]. 2009 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, VOLS 1 AND 2, 2009, : 486 - +
  • [4] Correlation between stress-induced leakage current (SILC) and the HfO2 bulk trap density in a SiO2/HfO2 stack
    Crupi, F
    Degraeve, R
    Kerber, A
    Kwak, DH
    Groeseneken, G
    [J]. 2004 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM PROCEEDINGS, 2004, : 181 - 187
  • [5] Negative oxygen vacancies in HfO2 as charge traps in high-k stacks
    Gavartin, J. L.
    Ramo, D. Munoz
    Shluger, A. L.
    Bersuker, G.
    Lee, B. H.
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (08)
  • [6] Analytic Modeling of the Bias Temperature Instability Using Capture/Emission Time Maps
    Grasser, T.
    Wagner, P. -J.
    Reisinger, H.
    Aichinger, Th
    Pobegen, G.
    Nelhiebel, M.
    Kaczer, B.
    [J]. 2011 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2011,
  • [7] Charge detrapping in HfO2 high-κ gate dielectric stacks
    Gusev, EP
    D'Emic, CP
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (25) : 5223 - 5225
  • [8] Hook T, 2014, IEEE SOI 3D SUBTHR M, P1, DOI DOI 10.1109/S3S2014.7028186
  • [9] Jang D., 2015, IEDM, P6, DOI [10.1109/IEDM.2015.7409678, DOI 10.1109/IEDM.2015.7409678]
  • [10] Voltage Ramp Stress for Bias Temperature Instability Testing of Metal-Gate/High-k Stacks
    Kerber, Andreas
    Krishnan, Siddarth A.
    Cartier, Eduard Albert
    [J]. IEEE ELECTRON DEVICE LETTERS, 2009, 30 (12) : 1347 - 1349