Exploring the application of carbon xerogels as anodes for sodium-ion batteries

被引:13
|
作者
Cuesta, Nuria [1 ]
Camean, Ignacio [1 ]
Arenillas, Ana [1 ]
Garcia, Ana B. [1 ]
机构
[1] CSIC, INCAR, Inst Ciencia & Tecnol Carbono, Francisco Pintado Fe 26, Oviedo 33011, Spain
关键词
Carbon xerogels; Pore structure; Anodes; Sodium-ion batteries; LITHIUM-ION; NA-ION; ELECTRODE MATERIALS; HARD CARBONS; PERFORMANCE; POROSITY; STORAGE; OPTIMIZATION; TEMPERATURE; STRATEGIES;
D O I
10.1016/j.micromeso.2020.110542
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Carbon xerogels (CXs) with the same chemical composition and BET surface area but different pore sizes (10-200 nm), which had been easily produced in large amounts via a cost-effective microwave-based process, are investigated as anodes for sodium-ion batteries (SIBs). The role of textural properties of CXs in the process of sodium ions storage was evaluated. The most suitable anode for SIBs was CX-100 with a pore size of 100 nm, the largest micropore volume and the lowest external surface area (S-ext), which gives an idea of the most accessible surface of the material, along with relatively high open porosity. Larger pore sizes facilitate electrolyte penetration, thus improving Na+ ions diffusion inside the electrode, while microporosity is crucial in increasing electrode capacity since Na+ ions storage on CXs is mainly due to absorption on the surface and in structural defects (i.e., micmporosity). Moreover, lowering S-ext leads to a decrease in the Na+ ions used in the formation of the SEI layer and irreversibly absorbed during initial cycles, therefore improving electrode performance. In summary, an optimal combination of textural properties, including pore structure and S-ext, should be considered in order to effectively design CXs for SIBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Hard carbon anodes of sodium-ion batteries: undervalued rate capability
    Li, Zhifei
    Jian, Zelang
    Wang, Xingfeng
    Rodriguez-Perez, Ismael A.
    Bommier, Clement
    Ji, Xiulei
    CHEMICAL COMMUNICATIONS, 2017, 53 (17) : 2610 - 2613
  • [32] Hard Carbon as Sodium-Ion Battery Anodes: Progress and Challenges
    Xiao, Biwei
    Rojo, Teofilo
    Li, Xiaolin
    CHEMSUSCHEM, 2019, 12 (01) : 133 - 144
  • [33] A life cycle assessment of hard carbon anodes for sodium-ion batteries
    Liu, Haoyu
    Xu, Zhen
    Guo, Zhenyu
    Feng, Jingyu
    Li, Haoran
    Qiu, Tong
    Titirici, Magdalena
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2209):
  • [34] Exploring the Economic Potential of Sodium-Ion Batteries
    Peters, Jens F.
    Cruz, Alexandra Pena
    Weil, Marcel
    BATTERIES-BASEL, 2019, 5 (01):
  • [35] Optimizing nitrogen-doped bamboo-derived hard carbon as anodes of sodium-ion batteries
    Wang, J. D.
    Kuai, J.
    Xie, J.
    Qiu, T.
    Wang, J.
    Li, A. L.
    Liu, F.
    Cheng, J. P.
    DIAMOND AND RELATED MATERIALS, 2025, 153
  • [36] Hard Carbon Composite Electrodes for Sodium-Ion Batteries with Nano-Zeolite and Carbon Black Additives
    Ledwoch, Daniela
    Robinson, James B.
    Gastol, Dominika
    Smith, Katherine
    Shearing, Paul R.
    Brett, Daniel J. L.
    Kendrick, Emma
    BATTERIES & SUPERCAPS, 2021, 4 (01) : 163 - 172
  • [37] Bulk Alloy Anodes for Sodium-Ion Batteries
    Wang, Xiaohan
    Zhao, Xiaoying
    Wang, Liubin
    BATTERIES & SUPERCAPS, 2025, 8 (04)
  • [38] Graphitic carbon foams as anodes for sodium-ion batteries in glyme-based electrolytes
    Rodriguez-Garcia, Jorge
    Camean, Ignacio
    Ramos, Alberto
    Rodriguez, Elena
    Garcia, Ana B.
    ELECTROCHIMICA ACTA, 2018, 270 : 236 - 244
  • [39] Structure and function of hard carbon negative electrodes for sodium-ion batteries
    Mittal, Uttam
    Djuandhi, Lisa
    Sharma, Neeraj
    Andersen, Henrik L.
    JOURNAL OF PHYSICS-ENERGY, 2022, 4 (04):
  • [40] Nanoengineering of Advanced Carbon Materials for Sodium-Ion Batteries
    Zhao, Shuoqing
    Guo, Ziqi
    Yang, Jian
    Wang, Chengyin
    Sun, Bing
    Wang, Guoxiu
    SMALL, 2021, 17 (48)