Exploring the application of carbon xerogels as anodes for sodium-ion batteries

被引:13
|
作者
Cuesta, Nuria [1 ]
Camean, Ignacio [1 ]
Arenillas, Ana [1 ]
Garcia, Ana B. [1 ]
机构
[1] CSIC, INCAR, Inst Ciencia & Tecnol Carbono, Francisco Pintado Fe 26, Oviedo 33011, Spain
关键词
Carbon xerogels; Pore structure; Anodes; Sodium-ion batteries; LITHIUM-ION; NA-ION; ELECTRODE MATERIALS; HARD CARBONS; PERFORMANCE; POROSITY; STORAGE; OPTIMIZATION; TEMPERATURE; STRATEGIES;
D O I
10.1016/j.micromeso.2020.110542
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Carbon xerogels (CXs) with the same chemical composition and BET surface area but different pore sizes (10-200 nm), which had been easily produced in large amounts via a cost-effective microwave-based process, are investigated as anodes for sodium-ion batteries (SIBs). The role of textural properties of CXs in the process of sodium ions storage was evaluated. The most suitable anode for SIBs was CX-100 with a pore size of 100 nm, the largest micropore volume and the lowest external surface area (S-ext), which gives an idea of the most accessible surface of the material, along with relatively high open porosity. Larger pore sizes facilitate electrolyte penetration, thus improving Na+ ions diffusion inside the electrode, while microporosity is crucial in increasing electrode capacity since Na+ ions storage on CXs is mainly due to absorption on the surface and in structural defects (i.e., micmporosity). Moreover, lowering S-ext leads to a decrease in the Na+ ions used in the formation of the SEI layer and irreversibly absorbed during initial cycles, therefore improving electrode performance. In summary, an optimal combination of textural properties, including pore structure and S-ext, should be considered in order to effectively design CXs for SIBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Performance of carbon xerogels as anodes for sodium dual-ion batteries
    Lobato, Belen
    Cuesta, Nuria
    Camean, Ignacio
    Flores-Lopez, Samantha L.
    Rey-Raap, Natalia
    Arenillas, Ana
    Garcia, Ana B.
    ELECTROCHIMICA ACTA, 2024, 489
  • [2] Carbon and Carbon Hybrid Materials as Anodes for Sodium-Ion Batteries
    Zhong, Xiongwu
    Wu, Ying
    Zeng, Sifan
    Yu, Yan
    CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (10) : 1248 - 1265
  • [3] Ultrafast synthesis of hard carbon anodes for sodium-ion batteries
    Zhen, Yichao
    Chen, Yang
    Li, Feng
    Guo, Zhenyu
    Hong, Zhensheng
    Titirici, Maria-Magdalena
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (42)
  • [4] A review of hard carbon anodes for rechargeable sodium-ion batteries
    Mu, Bao-yi
    Chi, Chun-lei
    Yang, Xin-hou
    Huangfu, Chao
    Qi, Bin
    Wang, Guan-wen
    Li, Zhi-yuan
    Song, Lei
    Wei, Tong
    Fan, Zhuang-jun
    NEW CARBON MATERIALS, 2024, 39 (05) : 796 - 823
  • [5] Recent Advances in Carbon Anodes for Sodium-Ion Batteries
    Zhang, Tengfei
    Li, Chen
    Wang, Fan
    Noori, Abolhassan
    Mousavi, Mir F.
    Xia, Xinhui
    Zhang, Yongqi
    CHEMICAL RECORD, 2022, 22 (10)
  • [6] Sustainable Carbon Materials from Sucrose as Anodes for Sodium-Ion Batteries
    Lobato, Belen
    Cuesta, Nuria
    Camean, Ignacio
    Martinez-Tarazona, Maria Rosa
    Garcia, Roberto
    Arenillas, Ana
    Garcia, Ana B.
    MOLECULES, 2025, 30 (05):
  • [7] Nickel-templated carbon foam anodes for sodium-ion batteries
    Zeng, Jinjue
    Wang, Tao
    Gu, Xianrui
    Zhu, Hongda
    Xu, Chiwei
    Sun, Dandan
    Ge, Cong
    Ding, Rui
    Li, Jia
    Liu, Jianguo
    Rong, Junfeng
    Wang, Xuebin
    Jiang, Xiangfen
    FLATCHEM, 2023, 40
  • [8] Recent Advances in Heterostructured Carbon Materials as Anodes for Sodium-Ion Batteries
    Zhao, Rui
    Sun, Ning
    Xu, Bin
    SMALL STRUCTURES, 2021, 2 (12):
  • [9] Recent Progress of MXene-Based Materials as Anodes in Sodium-Ion Batteries
    Fan, Kaiqing
    Wei, Chuangliang
    Feng, Jinkui
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (02) : 847 - 863
  • [10] Biomass-derived carbon anodes for sodium-ion batteries
    Huang, Si
    Qiu, Xue-qing
    Wang, Cai-wei
    Zhong, Lei
    Zhang, Zhi-hong
    Yang, Shun-sheng
    Sun, Shi-rong
    Yang, Dong-Jie
    Zhang, Wen-li
    NEW CARBON MATERIALS, 2023, 38 (01) : 40 - 72