STABILITY ANALYSIS FOR A GENERALIZED PROPORTIONAL FRACTIONAL LANGEVIN EQUATION WITH VARIABLE COEFFICIENT AND MIXED INTEGRO-DIFFERENTIAL BOUNDARY CONDITIONS

被引:15
|
作者
Sudsutad, Weerawat [1 ]
Alzabut, Jehad [2 ]
Nontasawatsri, Somsiri [3 ]
Thaiprayoon, Chatthai [4 ]
机构
[1] Navamindradhiraj Univ, Fac Sci & Hlth Technol, Dept Gen Educ, Bangkok 10300, Thailand
[2] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh 11586, Saudi Arabia
[3] Navamindradhiraj Univ, Fac Sci & Hlth Technol, Dept Hlth Technol, Bangkok 10300, Thailand
[4] Burapha Univ, Dept Math, Fac Sci, Chon Buri 20131, Thailand
来源
关键词
Fractional Langevin equation; Generalized proportional fractional derivative; Ulam stability; Existence and Uniqueness; Fixed point theorem; DIFFERENTIAL-EQUATIONS; DERIVATIVES;
D O I
10.23952/jnfa.2020.23
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Langevin equation within the generalized proportional fractional derivative. The proposed equation involves a variable coefficient and subjects to mixed integrodifferential boundary conditions. We introduce the generalized proportional fractional derivative and expose some of its features. We mainly investigate the existence, uniqueness and different types of Ulam stability of the solutions via fixed point theorems and inequality techniques. Finally, we provide two examples to support our main results.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Existence and Ulam stability for random fractional integro-differential equation
    Le Si Dong
    Ngo Van Hoa
    Ho Vu
    AFRIKA MATEMATIKA, 2020, 31 (7-8) : 1283 - 1294
  • [42] Some remarks on a fractional integro-differential inclusion with boundary conditions
    Cernea, Aurelian
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2015, 23 (01): : 73 - 82
  • [43] Ulam Stability for Fractional Partial Integro-Differential Equation with Uncertainty
    Long H.V.
    Kim Son N.T.
    Thanh Tam H.T.
    Yao J.-C.
    Acta Mathematica Vietnamica, 2017, 42 (4) : 675 - 700
  • [44] Existence and Ulam stability for random fractional integro-differential equation
    Le Si Dong
    Ngo Van Hoa
    Ho Vu
    Afrika Matematika, 2020, 31 : 1283 - 1294
  • [45] A Nonlinear Integro-Differential Equation with Fractional Order and Nonlocal Conditions
    Wahash, Hanan A.
    Abdo, Mohammed S.
    Panchal, Satish K.
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2020, 9 (03) : 469 - 481
  • [46] Analysis for fractional integro-differential equation with time delay
    Soliman, A. A.
    Raslan, K. R.
    Abdallah, A. M.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46): : 989 - 1007
  • [47] On Nonlinear Mixed Fractional Integro-Differential Equations with Positive Constant Coefficient
    Tate, Shivaji
    Kharat, V. V.
    Dinde, H. T.
    FILOMAT, 2019, 33 (17) : 5623 - 5638
  • [48] Study of Hyers-Ulam Stability for a Class of Multi-Singular Fractional Integro-Differential Equation with Boundary Conditions
    Kheiryan, A.
    Rezapour, Sh
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (11)
  • [49] Analysis of a Nonlinear ψ-Hilfer Fractional Integro-Differential Equation Describing Cantilever Beam Model with Nonlinear Boundary Conditions
    Kotsamran, Kanoktip
    Sudsutad, Weerawat
    Thaiprayoon, Chatthai
    Kongson, Jutarat
    Alzabut, Jehad
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [50] General Fractional Integro-Differential Equation of Order ϱ ∈ (2, 3] Involving Integral Boundary Conditions
    El Allaoui, Abdelati
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (01): : 221 - 236