Enhanced perversities

被引:15
作者
D'Agnolo, Andrea [1 ]
Kashiwara, Masaki [2 ]
机构
[1] Univ Padua, Dipartimento Matemat, Via Trieste 63, I-35121 Padua, Italy
[2] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2019年 / 751卷
基金
日本学术振兴会;
关键词
D O I
10.1515/crelle-2016-0062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On a complex manifold, the Riemann-Hilbert correspondence embeds the triangulated category of (not necessarily regular) holonomic D-modules into the triangulated category of R-constructible enhanced ind-sheaves. The source category has a standard t-structure. Here, we provide the target category with a middle perversity t-structure, and prove that the embedding is exact. In the paper, we also discuss general perversities in the framework of R-constructible enhanced ind-sheaves on bordered subanalytic spaces.
引用
收藏
页码:185 / 241
页数:57
相关论文
共 19 条
[1]  
[Anonymous], 1990, GRUNDLEHREN MATH WIS
[2]  
Beilinson A. A., 1982, Analysis and topology on singular spaces, vol. I (Luminy, P5
[3]  
BIERSTONE E, 1988, PUBL MATH-PARIS, P5
[4]   Stability conditions on triangulated categories [J].
Bridgeland, Tom .
ANNALS OF MATHEMATICS, 2007, 166 (02) :317-345
[5]   Riemann-Hilbert correspondence for holonomic D-modules [J].
D'Agnolo, Andrea ;
Kashiwara, Masaki .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2016, 123 (01) :69-197
[6]  
Guillermou S, 2014, Lect. Notes Unione Mat. Ital., V15, P43, DOI DOI 10.1007/978-3-319-06514-43
[7]  
Hironaka H., 1973, NUMBER THEORY ALGEBR, P453
[8]   THE RIEMANN-HILBERT PROBLEM FOR HOLONOMIC SYSTEMS [J].
KASHIWARA, M .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (02) :319-365
[9]  
Kashiwara M., 2003, Transl. Math. Monogr., V217
[10]  
KASHIWARA M, 2001, ASTERISQUE, V271