Rectifiability of Varifolds with Locally Bounded First Variation with Respect to Anisotropic Surface Energies

被引:29
作者
De Philippis, Guido [1 ]
De Rosa, Antonio [2 ]
Ghiraldin, Francesco [3 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
关键词
D O I
10.1002/cpa.21713
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend Allard's celebrated rectifiability theorem to the setting of varifolds with locally bounded first variation with respect to an anisotropic integrand. In particular, we identify a sufficient and necessary condition on the integrand to obtain the rectifiability of every d-dimensional varifold with locally bounded first variation and positive d-dimensional density. In codimension 1, this condition is shown to be equivalent to the strict convexity of the integrand with respect to the tangent plane. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:1123 / 1148
页数:26
相关论文
共 21 条
[1]  
Allard W. K., 1974, S MATH, VXIV, P429
[2]  
ALLARD WK, 1986, P SYMP PURE MATH, V44, P1
[3]   FIRST VARIATION OF A VARIFOLD [J].
ALLARD, WK .
ANNALS OF MATHEMATICS, 1972, 95 (03) :417-&
[4]  
Alvarez Paiva J.C., 2004, Mathematical Sciences Research Institute Publications, P1
[5]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[6]   CONVEX BODIES AND CONVEXITY ON GRASSMANN CONES .1-5. [J].
BUSEMANN, H ;
EWALD, G .
MATHEMATISCHE ANNALEN, 1963, 151 (01) :1-41
[7]  
Busemann H., 1962, ARCH MATH BASEL, V13, P512, DOI [10.1007/BF01650101, DOI 10.1007/BF01650101]
[8]   A direct approach to Plateau's problem [J].
De Lellis, C. ;
Ghiraldin, F. ;
Maggi, F. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (08) :2219-2240
[9]   Structure of entropy solutions for multi-dimensional scalar conservation laws [J].
De Lellis, C ;
Otto, F ;
Westdickenberg, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (02) :137-184
[10]   A direct approach to Plateau's problem in any codimension [J].
De Philippis, G. ;
De Rosa, A. ;
Ghiraldin, F. .
ADVANCES IN MATHEMATICS, 2016, 288 :59-80