Fluid-structure algorithms based on Steklov-Poincare operators

被引:100
作者
Deparis, Simone
Discacciati, Marco
Fourestey, Gilles
Quarteroni, Alfio
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Ecole Polytech Fed Lausanne, IACS, Chair Modeling & Sci Comp, CH-1015 Lausanne, Switzerland
[3] Politecn Milan, MOX, I-20133 Milan, Italy
关键词
fluid-structure interaction; finite element method; Steklov-Poincare equation; domain decomposition; linear and nonlinear interface operators;
D O I
10.1016/j.cma.2005.09.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we review some classical algorithms for fluid-structure interaction problems and we propose an alternative viewpoint mutuated from the domain decomposition theory. This approach yields preconditioned Richardson iterations on the Steklov-Poincare nonlinear equation at the fluid-structure interface. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:5797 / 5812
页数:16
相关论文
共 39 条
[11]  
Donea, 2004, ENCY COMPUTATIONAL M, V1, DOI 10.1002/9781119176817.ecm2009
[12]   Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity [J].
Farhat, C ;
Lesoinne, M ;
LeTallec, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 157 (1-2) :95-114
[13]   Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity [J].
Farhat, C ;
van der Zee, KG ;
Geuzaine, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (17-18) :1973-2001
[14]   A Newton method using exact jacobians for solving fluid-structure coupling [J].
Fernández, MA ;
Moubachir, M .
COMPUTERS & STRUCTURES, 2005, 83 (2-3) :127-142
[15]   A second-order time-accurate ALE Lagrange-Galerkin method applied to wind engineering and control of bridge profiles [J].
Fourestey, G ;
Piperno, S .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (39-41) :4117-4137
[16]  
FOURESTEY G, 2002, THESIS ECOLE NATL PO
[17]   Fluid-structure interaction in blood flows on geometries based on medical imaging [J].
Gerbeau, JF ;
Vidrascu, M ;
Frey, P .
COMPUTERS & STRUCTURES, 2005, 83 (2-3) :155-165
[18]  
GERBEAU JF, 2003, MATH MODELL NUMER AN, V37, P663
[19]   An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems [J].
Heil, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (1-2) :1-23
[20]   LAGRANGIAN-EULERIAN FINITE-ELEMENT FORMULATION FOR INCOMPRESSIBLE VISCOUS FLOWS [J].
HUGHES, TJR ;
LIU, WK ;
ZIMMERMANN, TK .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1981, 29 (03) :329-349