Time-Fractional Diffusion-Wave Equation with Mass Absorption in a Sphere under Harmonic Impact

被引:18
|
作者
Datsko, Bohdan [1 ,2 ]
Podlubny, Igor [3 ]
Povstenko, Yuriy [4 ]
机构
[1] Rzeszow Univ Technol, Fac Math & Appl Phys, Powstancow Warszawy 8, PL-35959 Rzeszow, Poland
[2] NAS Ukraine, Inst Appl Problems Mech & Math, UA-79060 Lvov, Ukraine
[3] Tech Univ Kosice, BERG Fac, B Nemcovej 3, Kosice 04200, Slovakia
[4] Jan Dlugosz Univ Czestochowa, Fac Math & Nat Sci, Armii Krajowej 13-15, PL-42200 Czestochowa, Poland
关键词
fractional calculus; mass absorption; diffusion-wave equation; Caputo derivative; harmonic impact; Laplace transform; Fourier transform; Mittag-Leffler function; BIOHEAT EQUATION; HEAT-CONDUCTION;
D O I
10.3390/math7050433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The time-fractional diffusion equation with mass absorption in a sphere is considered under harmonic impact on the surface of a sphere. The Caputo time-fractional derivative is used. The Laplace transform with respect to time and the finite sin-Fourier transform with respect to the spatial coordinate are employed. A graphical representation of the obtained analytical solution for different sets of the parameters including the order of fractional derivative is given.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Existence for Time-Fractional Semilinear Diffusion Equation on the Sphere
    Phuong, N. D.
    Ho Duy Binh
    Ho Thi Kim Van
    Le Dinh Long
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [42] Numerical simulation for time-fractional diffusion-wave equations with time delay
    Zhang, Yaoyao
    Wang, Zhibo
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 137 - 157
  • [43] Backward problems in time for fractional diffusion-wave equation
    Floridia, G.
    Yamamoto, M.
    INVERSE PROBLEMS, 2020, 36 (12)
  • [44] Wavelets method for the time fractional diffusion-wave equation
    Heydari, M. H.
    Hooshmandasl, M. R.
    Ghaini, F. M. Maalek
    Cattani, C.
    PHYSICS LETTERS A, 2015, 379 (03) : 71 - 76
  • [45] Generalized differential transform method for solving a space-and time-fractional diffusion-wave equation
    Momani, Shaher
    Odibat, Zaid
    Erturk, Vedat Suat
    PHYSICS LETTERS A, 2007, 370 (5-6) : 379 - 387
  • [46] The quasi-reversibility regularization method for backward problems of the time-fractional diffusion-wave equation
    Wen, Jin
    Wang, Yong-Ping
    PHYSICA SCRIPTA, 2023, 98 (09)
  • [47] Mathematical Analysis of a Cauchy Problem for the Time-Fractional Diffusion-Wave Equation with α ∈ (0,2)
    Nahuel Goos, Demian
    Fernanda Reyero, Gabriela
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2018, 24 (02) : 560 - 582
  • [48] General one-dimensional model of the time-fractional diffusion-wave equation in various geometries
    Terpak, Jan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (02) : 599 - 618
  • [49] The backward problem for an inhomogeneous time-fractional diffusion-wave equation in an axis-symmetric cylinder
    Shi, Chengxin
    Cheng, Hao
    Geng, Xiaoxiao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 137 : 44 - 60
  • [50] Second-Order Stable Finite Difference Schemes for the Time-Fractional Diffusion-Wave Equation
    Fanhai Zeng
    Journal of Scientific Computing, 2015, 65 : 411 - 430