Time-Fractional Diffusion-Wave Equation with Mass Absorption in a Sphere under Harmonic Impact

被引:18
作者
Datsko, Bohdan [1 ,2 ]
Podlubny, Igor [3 ]
Povstenko, Yuriy [4 ]
机构
[1] Rzeszow Univ Technol, Fac Math & Appl Phys, Powstancow Warszawy 8, PL-35959 Rzeszow, Poland
[2] NAS Ukraine, Inst Appl Problems Mech & Math, UA-79060 Lvov, Ukraine
[3] Tech Univ Kosice, BERG Fac, B Nemcovej 3, Kosice 04200, Slovakia
[4] Jan Dlugosz Univ Czestochowa, Fac Math & Nat Sci, Armii Krajowej 13-15, PL-42200 Czestochowa, Poland
关键词
fractional calculus; mass absorption; diffusion-wave equation; Caputo derivative; harmonic impact; Laplace transform; Fourier transform; Mittag-Leffler function; BIOHEAT EQUATION; HEAT-CONDUCTION;
D O I
10.3390/math7050433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The time-fractional diffusion equation with mass absorption in a sphere is considered under harmonic impact on the surface of a sphere. The Caputo time-fractional derivative is used. The Laplace transform with respect to time and the finite sin-Fourier transform with respect to the spatial coordinate are employed. A graphical representation of the obtained analytical solution for different sets of the parameters including the order of fractional derivative is given.
引用
收藏
页数:11
相关论文
共 51 条
  • [1] ABUTEEN E., 2016, J MATH STAT, V1, P23, DOI DOI 10.3844/JMSSP.2016.23.33
  • [2] Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Levy Stable Processes
    Anderson, Johan
    Moradi, Sara
    Rafiq, Tariq
    [J]. ENTROPY, 2018, 20 (10):
  • [3] [Anonymous], 2014, INTRO PHYS
  • [4] [Anonymous], 1965, Handbook of mathematical functions dover publications
  • [5] Atanackovi T.M., 2014, Fractional Calculus with Applications in Mechanics
  • [6] Crank J., 1979, The Mathematics of Diffusion
  • [7] Solution of fractional bioheat equation in terms of Fox's H-function
    Damor, R. S.
    Kumar, Sushil
    Shukla, A. K.
    [J]. SPRINGERPLUS, 2016, 5 : 1 - 10
  • [8] Complex nonlinear dynamics in subdiffusive activator-inhibitor systems
    Datsko, B.
    Gafiychuk, V.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) : 1673 - 1680
  • [9] Datsko B. Y., 2006, Journal of Medical Engineering & Technology, V30, P390, DOI 10.1080/03091900500467340
  • [10] COMPLEX SPATIO-TEMPORAL SOLUTIONS IN FRACTIONAL REACTION-DIFFUSION SYSTEMS NEAR A BIFURCATION POINT
    Datsko, Bohdan
    Gafiychuk, Vasyl
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 237 - 253