Time-Fractional Diffusion-Wave Equation with Mass Absorption in a Sphere under Harmonic Impact

被引:18
|
作者
Datsko, Bohdan [1 ,2 ]
Podlubny, Igor [3 ]
Povstenko, Yuriy [4 ]
机构
[1] Rzeszow Univ Technol, Fac Math & Appl Phys, Powstancow Warszawy 8, PL-35959 Rzeszow, Poland
[2] NAS Ukraine, Inst Appl Problems Mech & Math, UA-79060 Lvov, Ukraine
[3] Tech Univ Kosice, BERG Fac, B Nemcovej 3, Kosice 04200, Slovakia
[4] Jan Dlugosz Univ Czestochowa, Fac Math & Nat Sci, Armii Krajowej 13-15, PL-42200 Czestochowa, Poland
关键词
fractional calculus; mass absorption; diffusion-wave equation; Caputo derivative; harmonic impact; Laplace transform; Fourier transform; Mittag-Leffler function; BIOHEAT EQUATION; HEAT-CONDUCTION;
D O I
10.3390/math7050433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The time-fractional diffusion equation with mass absorption in a sphere is considered under harmonic impact on the surface of a sphere. The Caputo time-fractional derivative is used. The Laplace transform with respect to time and the finite sin-Fourier transform with respect to the spatial coordinate are employed. A graphical representation of the obtained analytical solution for different sets of the parameters including the order of fractional derivative is given.
引用
收藏
页数:11
相关论文
共 50 条