Impact of tropical land convection on the water vapour budget in the tropical tropopause layer

被引:11
作者
Carminati, F. [1 ,2 ,5 ]
Ricaud, P. [1 ]
Pommereau, J. -P. [3 ]
Riviere, E. [4 ]
Khaykin, S. [3 ]
Attie, J. -L. [1 ,5 ]
Warner, J. [2 ]
机构
[1] CNRS, UMR 3589, Meteo France, CNRM GAME, Toulouse, France
[2] Univ Maryland, AOSC, College Pk, MD 20742 USA
[3] Univ Versailles St Quentin, CNRS, LATMOS, Guyancourt, France
[4] Univ Reims, CNRS, GSMA, Reims, France
[5] CNRS, UMR 5560, Lab Aerol, Toulouse, France
关键词
LOWER STRATOSPHERE; TROPOSPHERIC AIR; DEEP CONVECTION; TRANSPORT; DEHYDRATION; MODEL; HYDRATION; AIRCRAFT; CAMPAIGN; SOUNDER;
D O I
10.5194/acp-14-6195-2014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The tropical deep overshooting convection is known to be most intense above continental areas such as South America, Africa, and the maritime continent. However, its impact on the tropical tropopause layer (TTL) at global scale remains debated. In our analysis, we use the 8-year Microwave Limb Sounder (MLS) water vapour (H2O), cloud ice-water content (IWC), and temperature data sets from 2005 to date, to highlight the interplays between these parameters and their role in the water vapour variability in the TTL, and separately in the northern and southern tropics. In the tropical upper troposphere (177 hPa), continents, including the maritime continent, present the night-time (01:30 local time, LT) peak in the water vapour mixing ratio characteristic of the H2O diurnal cycle above tropical land. The western Pacific region, governed by the tropical oceanic diurnal cycle, has a daytime maximum (13:30 LT). In the TTL (100 hPa) and tropical lower stratosphere (56 hPa), South America and Africa differ from the maritime continent and western Pacific displaying a daytime maximum of H2O. In addition, the relative amplitude between day and night is found to be systematically higher by 5-10% in the southern tropical upper troposphere and 1-3% in the TTL than in the northern tropics during their respective summer, indicative of a larger impact of the convection on H2O in the southern tropics. Using a regional-scale approach, we investigate how mechanisms linked to the H2O variability differ in function of the geography. In summary, the MLS water vapour and cloud ice-water observations demonstrate a clear contribution to the TTL moistening by ice crystals overshooting over tropical land regions. The process is found to be much more effective in the southern tropics. Deep convection is responsible for the diurnal temperature variability in the same geographical areas in the lowermost stratosphere, which in turn drives the variability of H2O.
引用
收藏
页码:6195 / 6211
页数:17
相关论文
共 50 条
  • [31] Quantifying the Radiative Impact of Clouds on Tropopause Layer Cooling in Tropical Cyclones
    Rivoire, Louis
    Birner, Thomas
    Knaff, John A.
    Tourville, Natalie
    [J]. JOURNAL OF CLIMATE, 2020, 33 (15) : 6361 - 6376
  • [32] The role of tropical deep convective clouds on temperature, water vapor, and dehydration in the tropical tropopause layer (TTL)
    Chae, J. H.
    Wu, D. L.
    Read, W. G.
    Sherwood, S. C.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (08) : 3811 - 3821
  • [33] Identification of the tropical tropopause transition layer using the ozone-water vapor relationship
    Pan, Laura L.
    Paulik, Laura C.
    Honomichl, Shawn B.
    Munchak, Leigh A.
    Bian, Jianchun
    Selkirk, Henry B.
    Voemel, Holger
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (06) : 3586 - 3599
  • [34] Microphysical Properties of Tropical Tropopause Layer Cirrus
    Woods, Sarah
    Lawson, R. Paul
    Jensen, Eric
    Bui, T. P.
    Thornberry, Troy
    Rollins, Andrew
    Pfister, Leonhard
    Avery, Melody
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (11) : 6053 - 6069
  • [35] Ice nucleation and dehydration in the Tropical Tropopause Layer
    Jensen, Eric J.
    Diskin, Glenn
    Lawson, R. Paul
    Lance, Sara
    Bui, T. Paul
    Hlavka, Dennis
    McGill, Matthew
    Pfister, Leonhard
    Toon, Owen B.
    Gao, Rushan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (06) : 2041 - 2046
  • [36] The Tropical Tropopause Layer 1960-2100
    Gettelman, A.
    Birner, T.
    Eyring, V.
    Akiyoshi, H.
    Bekki, S.
    Bruehl, C.
    Dameris, M.
    Kinnison, D. E.
    Lefevre, F.
    Lott, F.
    Mancini, E.
    Pitari, G.
    Plummer, D. A.
    Rozanov, E.
    Shibata, K.
    Stenke, A.
    Struthers, H.
    Tian, W.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (05) : 1621 - 1637
  • [37] Diagnostics of the Tropical Tropopause Layer from in-situ observations and CCM data
    Palazzi, E.
    Fierli, F.
    Cairo, F.
    Cagnazzo, C.
    Di Donfrancesco, G.
    Manzini, E.
    Ravegnani, F.
    Schiller, C.
    D'Amato, F.
    Volk, C. M.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (24) : 9349 - 9367
  • [38] Convective Influence on the Humidity and Clouds in the Tropical Tropopause Layer During Boreal Summer
    Ueyama, Rei
    Jensen, Eric J.
    Pfister, Leonhard
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (14) : 7576 - 7593
  • [39] Tropical cooling in the case of stratospheric sudden warming in January 2009: focus on the tropical tropopause layer
    Yoshida, K.
    Yamazaki, K.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (13) : 6325 - 6336
  • [40] Unprecedented Observations of a Nascent In Situ Cirrus in the Tropical Tropopause Layer
    Reinares Martinez, I.
    Evan, S.
    Wienhold, F. G.
    Brioude, J.
    Jensen, E. J.
    Thornberry, T. D.
    Heron, D.
    Verreyken, B.
    Korner, S.
    Vomel, H.
    Metzger, J. -M.
    Posny, F.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (04)