Completeness of the system of root functions of q-Sturm-Liouville operators

被引:0
作者
Tuna, Huseyin [1 ]
Eryilmaz, Aytekin [2 ]
机构
[1] Mehmet Akif Ersoy Univ, Dept Math, TR-15100 Burdur, Turkey
[2] Nevsehir Univ, Dept Math, TR-50300 Nevsehir, Turkey
关键词
q-Sturm-Liouville operator; dissipative operator; completeness of the system of eigenvectors and associated vectors; Lidskii ' s theorem; Q-DIFFERENCE EQUATIONS; EIGENVECTORS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study q-Sturm-Liouville operators. We construct a space of boundary values of the minimal operator and describe all maximal dissipative, maximal accretive, self-adjoint and other extensions of q-Sturm-Liouville operators in terms of boundary conditions. Then we prove a theorem on completeness of the system of eigen-functions and associated functions of dissipative operators by using the Lidskii's theorem.
引用
收藏
页码:65 / 73
页数:9
相关论文
共 25 条
  • [1] Spectral analysis of q-difference equations with spectral singularities
    Adivar, M
    Bohner, M
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (7-8) : 695 - 703
  • [2] Basic Sturm-Liouville problems
    Annaby, MH
    Mansour, ZS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (17): : 3775 - 3797
  • [3] [Anonymous], J MATH
  • [4] [Anonymous], T MOSKOW MATH OBSC
  • [5] Krein's Theorems for a Dissipative Boundary Value Transmission Problem
    Bairamov, Elgiz
    Ugurlu, Ekin
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (04) : 831 - 842
  • [6] The determinants of dissipative Sturm-Liouville operators with transmission conditions
    Bairamov, Elgiz
    Ugurlu, Ekin
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (5-6) : 805 - 813
  • [7] NEW Q-DERIVATIVE AND Q-LOGARITHM
    CHUNG, KS
    CHUNG, WS
    NAM, ST
    KANG, HJ
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1994, 33 (10) : 2019 - 2029
  • [8] Ernst T., 2000, The history of q-calculus and a new method
  • [9] Spectral Analysis of q-Sturm-Liouville Problem with the Spectral Parameter in the Boundary Condition
    Eryilmaz, Aytekin
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [10] MORE ON THE Q-OSCILLATOR ALGEBRA AND Q-ORTHOGONAL POLYNOMIALS
    FLOREANINI, R
    LETOURNEUX, J
    VINET, L
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (10): : L287 - L293