Synergetic effect of single-walled carbon nanotubes (SWCNT) and graphene nanoplatelets (GNP) in electrically conductive PTT-block-PTMO hybrid nanocomposites prepared by in situ polymerization

被引:45
作者
Paszkiewicz, Sandra [1 ]
Szymczyk, A. [2 ]
Sui, X. M. [3 ]
Wagner, H. D. [3 ]
Linares, A. [4 ]
Ezquerra, T. A. [4 ]
Roslaniec, Z. [1 ]
机构
[1] West Pomeranian Univ Technol, Inst Mat Sci & Engn, PL-70310 Szczecin, Poland
[2] West Pomeranian Univ Technol, Inst Phys, PL-70310 Szczecin, Poland
[3] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel
[4] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain
关键词
Hybrid composites; Nano particles; Synergism; Electrical properties; Raman spectroscopy; RAMAN-SPECTROSCOPY; POLY(TRIMETHYLENE TEREPHTHALATE); MECHANICAL-PROPERTIES; EPOXY COMPOSITES; GRAPHITE; OXIDE); COPOLYMER; STRENGTH;
D O I
10.1016/j.compscitech.2015.08.011
中图分类号
TB33 [复合材料];
学科分类号
摘要
A synergetic effect between graphene nanoplatelets (GNP) and single-walled carbon nanotubes (SWCNT) leading to an improvement of the electrical conductivity of poly(trimethylene terephthalate-block-poly(tetramethylene oxide) (PTT-PTMO) based nanocomposites is demonstrated. PTT-PTMO based nanocomposites were prepared with varying concentration of SWCNT and GNP as conducting fillers, and their electrical conductivity and morphology were evaluated using Dielectric and Raman spectroscopies respectively. It has been shown that the addition of SWCNT and GNP enhanced the electrical conductivity of composites, particularly in the case of composites with 0.3 wt. % SWCNT and 0.1 wt. % GNP nanoparticles. These results suggest the existence of synergy arising from the combination of two conducting fillers with different geometrical shapes and aspect ratios as well as different dispersion characteristics in the PTT-PTMO thermoplastic elastomer matrix. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:72 / 77
页数:6
相关论文
共 33 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Green preparation of reduced graphene oxide for sensing and energy storage applications [J].
Bo, Zheng ;
Shuai, Xiaorui ;
Mao, Shun ;
Yang, Huachao ;
Qian, Jiajing ;
Chen, Junhong ;
Yan, Jianhua ;
Cen, Kefa .
SCIENTIFIC REPORTS, 2014, 4
[3]  
CHAE HG, 2006, CARBON NANOTUBES PRO, P213
[4]   Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites [J].
Chatterjee, S. ;
Nafezarefi, F. ;
Tai, N. H. ;
Schlagenhauf, L. ;
Nueesch, F. A. ;
Chu, B. T. T. .
CARBON, 2012, 50 (15) :5380-5386
[5]   Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy [J].
Cooper, CA ;
Young, RJ ;
Halsall, M .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2001, 32 (3-4) :401-411
[6]   PHYSICS OF CARBON NANOTUBES [J].
DRESSELHAUS, MS ;
DRESSELHAUS, G ;
SAITO, R .
CARBON, 1995, 33 (07) :883-891
[7]   Symmetry-, time-, and temperature-dependent strength of carbon nanotubes [J].
Dumitrica, T ;
Hua, M ;
Yakobson, BI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (16) :6105-6109
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[10]   Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain [J].
Frogley, MD ;
Zhao, Q ;
Wagner, HD .
PHYSICAL REVIEW B, 2002, 65 (11) :1134131-1134134