Solvent properties of aqueous biphasic systems composed of polyethylene glycol and salt characterized by the free energy of transfer of a methylene group between the phases and by a linear solvation energy relationship

被引:96
作者
Willauer, HD
Huddleston, JG
Rogers, RD
机构
[1] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA
[2] Univ Alabama, Ctr Green Mfg, Tuscaloosa, AL 35487 USA
关键词
D O I
10.1021/ie0107800
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Aqueous biphasic systems (ABSs) composed of poly(ethylene glycol) (PEG) and salt have been examined as potential environmentally benign solvents for liquid/liquid extraction. These systems might also represent an alternative to traditional solvent/water systems used in quantitative structure-activity relationships (QSARs). For the application and design of these systems, it is important to have a thorough understanding of the nature of the solvent and its interactions with the solute, and thus, PEG/salt ABSs have been characterized to this end by a variety of methods. The relative hydrophobicities of several PEG/salt ABSs composed of different molecular weights of PEG (1000, 2000, and 3400) and a variety of inorganic salts [K3PO4, K2CO3, (NH4)(2)SO4, Li2SO4, MnSO4, ZnSO4, and NaOH] were measured by the free energy of transfer of a methylene group DeltaG(CH2). These results indicate that the relative hydrophobicity of a PEG/salt ABS is a function of only the degree of phase divergence of the biphasic system as expressed by the difference in polymer concentration between the phases [delta poly(ethylene glycol) (APEG), delta ethylene oxide monomer (DeltaEO)] or the the line length (TLL). The distributions of a wide range of solutes differing in structure and functionality were also measured in PEG/salt ABSs, and the results were compared to the corresponding 1-octanol/water partition coefficients. These data were used to develop a linear free energy relationship (LFER) based on Abraham's generalized solvation equation, enabling a direct comparison to be made between the solvent properties of PEG/salt ABSs and those of traditional solvent/water systems used, for example, in the determination of log P. Similar comparisons are also enabled with the properties of certain aqueous micellar systems.
引用
收藏
页码:2591 / 2601
页数:11
相关论文
共 74 条
[2]   HYDROGEN-BONDING .34. THE FACTORS THAT INFLUENCE THE SOLUBILITY OF GASES AND VAPORS IN WATER AT 298-K, AND A NEW METHOD FOR ITS DETERMINATION [J].
ABRAHAM, MH ;
ANDONIANHAFTVAN, J ;
WHITING, GS ;
LEO, A ;
TAFT, RS .
JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1994, (08) :1777-1791
[3]   HYDROGEN-BONDING .31. CONSTRUCTION OF A SCALE OF SOLUTE EFFECTIVE OR SUMMATION HYDROGEN-BOND BASICITY [J].
ABRAHAM, MH .
JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 1993, 6 (12) :660-684
[4]   HYDROGEN-BONDING .32. AN ANALYSIS OF WATER-OCTANOL AND WATER-ALKANE PARTITIONING AND THE DELTA-LOG-P PARAMETER OF SEILER [J].
ABRAHAM, MH ;
CHADHA, HS ;
WHITING, GS ;
MITCHELL, RC .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1994, 83 (08) :1085-1100
[5]  
Abraham MH, 1999, PESTIC SCI, V55, P78, DOI 10.1002/(SICI)1096-9063(199901)55:1<78::AID-PS853>3.0.CO
[6]  
2-7
[7]  
ABRAHAM MH, 2000, COMMUNICATION
[8]  
ABRAHAM MH, COMMUNICATION
[9]  
Albertsson P.A., 1986, PARTITION CELL PARTI
[10]   PARTITION OF PROTEINS IN LIQUID POLYMER-POLYMER 2-PHASE SYSTEMS [J].
ALBERTSSON, PA .
NATURE, 1958, 182 (4637) :709-711