Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks

被引:167
作者
Cidonio, Gianluca [1 ,2 ]
Alcala-Orozco, Cesar R. [3 ]
Lim, Khoon S. [3 ]
Glinka, Michael [1 ]
Mutreja, Isha [3 ]
Kim, Yang-Hee [1 ]
Dawson, Jonathan, I [1 ]
Woodfield, Tim B. F. [3 ]
Oreffo, Richard O. C. [1 ]
机构
[1] Univ Southampton, Ctr Human Dev Stem Cells & Regenerat, Inst Dev Sci, Bone & Joint Res Grp, Southampton, Hants, England
[2] Univ Southampton, Fac Engn & Environm, Engn Mat Res Grp, Southampton, Hants, England
[3] Univ Otago Christchurch, Dept Orthopaed Surg & Musculoskeletal Med, Christchurch Regenerat Med & Tissue Engn CReaTE G, Christchurch, New Zealand
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Laponite; GelMA; skeletal cell; bioink; growth factor delivery; hydrogels; ex vivo; NON-CLAY MINERALS; MICROCHANNEL NETWORKS; GROWTH-FACTOR; STEM-CELLS; IN-VITRO; BONE; HYDROGELS; REPAIR; VASCULARIZATION; BIOFABRICATION;
D O I
10.1088/1758-5090/ab19fd
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Bioprinting of living cells is rapidly developing as an advanced biofabrication approach to engineer tissues. Bioinks can be extruded in three-dimensions (3D) to fabricate complex and hierarchical constructs for implantation. However, a lack of functionality can often be attributed to poor bioink properties. Indeed, advanced bioinks encapsulating living cells should: (i) present optimal rheological properties and retain 3D structure post fabrication, (ii) promote cell viability and support cell differentiation, and (iii) localise proteins of interest (e.g. vascular endothelial growth factor (VEGF)) to stimulate encapsulated cell activity and tissue ingrowth upon implantation. In this study, we present the results of the inclusion of a synthetic nanoclay, Laponite((R)) (LPN) together with a gelatin methacryloyl (GelMA) bioink and the development of a functional cell-instructive bioink. A nanocomposite bioink displaying enhanced shape fidelity retention and interconnected porosity within extrusion-bioprinted fibres was observed. Human bone marrow stromal cell (HBMSC) viability within the nanocomposite showed no significant changes over 21 days of culture in LPN-GelMA (85.60 +/- 10.27%), compared to a significant decrease in GelMA from 7 (95.88 +/- 2.90%) to 21 days (55.54 +/- 14.72%) (p < 0.01). HBMSCs were observed to proliferate in LPN-GelMA with a significant increase in cell number over 21 days (p < 0.0001) compared to GelMA alone. HBMS-Claden LPN-GelMA scaffolds supported osteogenic differentiation evidenced by mineralised nodule formation, including in the absence of the osteogenic drug dexamethasone. Ex vivo implantation in a chick chorioallantoic membrane model, demonstrated excellent integration of the bioink constructs in the vascular chick embryo after 7 days of incubation. VEGF-loaded LPN-GelMA constructs demonstrated significantly higher vessel penetration than GelMA-VEGF (p < 0.0001) scaffolds. Integration and vascularisation was directly related to increased drug absorption and retention by LPN-GelMA compared to LPN-free GelMA. In summary, a novel light-curable nanocomposite bioink for 3D skeletal regeneration supportive of cell growth and growth factor retention and delivery, evidenced by ex vivo vasculogenesis, was developed with potential application in hard and soft tissue reparation.
引用
收藏
页数:17
相关论文
共 71 条
[1]   Development of a clay based bioink for 3D cell printing for skeletal application [J].
Ahlfeld, T. ;
Cidonio, G. ;
Kilian, D. ;
Duin, S. ;
Akkineni, A. R. ;
Dawson, J. I. ;
Yang, S. ;
Lode, A. ;
Oreffo, R. O. C. ;
Gelinsky, M. .
BIOFABRICATION, 2017, 9 (03)
[2]   Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis [J].
Bai, Yan ;
Bai, Lijuan ;
Zhou, Jing ;
Chen, Huali ;
Zhang, Liangke .
CELLULAR IMMUNOLOGY, 2018, 323 :19-32
[3]   Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs [J].
Bertassoni, Luiz E. ;
Cecconi, Martina ;
Manoharan, Vijayan ;
Nikkhah, Mehdi ;
Hjortnaes, Jesper ;
Cristino, Ana Luiza ;
Barabaschi, Giada ;
Demarchi, Danilo ;
Dokmeci, Mehmet R. ;
Yang, Yunzhi ;
Khademhosseini, Ali .
LAB ON A CHIP, 2014, 14 (13) :2202-2211
[4]   Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels [J].
Bertassoni, Luiz E. ;
Cardoso, Juliana C. ;
Manoharan, Vijayan ;
Cristino, Ana L. ;
Bhise, Nupura S. ;
Araujo, Wesleyan A. ;
Zorlutuna, Pinar ;
Vrana, Nihal E. ;
Ghaemmaghami, Amir M. ;
Dokmeci, Mehmet R. ;
Khademhosseini, Ali .
BIOFABRICATION, 2014, 6 (02)
[5]   The study of familial hypercholesterolemia in Italy: A narrative review [J].
Bertolini, Stefano ;
Pisciotta, Livia ;
Fasano, Tommaso ;
Rabacchi, Claudio ;
Calandra, Sebastiano .
ATHEROSCLEROSIS SUPPLEMENTS, 2017, 29 :1-10
[6]   The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability [J].
Billiet, Thomas ;
Gevaert, Elien ;
De Schryver, Thomas ;
Cornelissen, Maria ;
Dubruel, Peter .
BIOMATERIALS, 2014, 35 (01) :49-62
[7]  
Carrow JK, 2018, P NATL ACAD SCI USA, DOI [10.1073/pnas.171616411, DOI 10.1073/PNAS.171616411]
[8]   Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels [J].
Chen, Ying-Chieh ;
Lin, Ruei-Zeng ;
Qi, Hao ;
Yang, Yunzhi ;
Bae, Hojae ;
Melero-Martin, Juan M. ;
Khademhosseini, Ali .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (10) :2027-2039
[9]   Nanoengineered Ionic-Covalent Entanglement (NICE) Bioinks for 3D Bioprinting [J].
Chimene, David ;
Peak, Charles W. ;
Gentry, James L. ;
Carrow, James K. ;
Cross, Lauren M. ;
Mondragon, Eli ;
Cardoso, Guinea B. ;
Kaunas, Roland ;
Gaharwar, Akhilesh K. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (12) :9957-9968
[10]   Microfl uidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink [J].
Colosi, Cristina ;
Shin, Su Ryon ;
Manoharan, Vijayan ;
Massa, Solange ;
Costantini, Marco ;
Barbetta, Andrea ;
Dokmeci, Mehmet Remzi ;
Dentini, Mariella ;
Khademhosseini, Ali .
ADVANCED MATERIALS, 2016, 28 (04) :677-684