Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network

被引:862
作者
Li, Ying [1 ]
Zhang, Haokui [1 ]
Shen, Qiang [2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710129, Shaanxi, Peoples R China
[2] Aberystwyth Univ, Inst Math Phys & Comp Sci, Dept Comp Sci, Aberystwyth SY23 3DB, Dyfed, Wales
关键词
hyperspectral image classification; deep learning; 2D convolutional neural networks; 3D convolutional neural networks; 3D structure; LOGISTIC-REGRESSION;
D O I
10.3390/rs9010067
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent research has shown that using spectral-spatial information can considerably improve the performance of hyperspectral image (HSI) classification. HSI data is typically presented in the format of 3D cubes. Thus, 3D spatial filtering naturally offers a simple and effective method for simultaneously extracting the spectral-spatial features within such images. In this paper, a 3D convolutional neural network (3D-CNN) framework is proposed for accurate HSI classification. The proposed method views the HSI cube data altogether without relying on any preprocessing or post-processing, extracting the deep spectral-spatial-combined features effectively. In addition, it requires fewer parameters than other deep learning-based methods. Thus, the model is lighter, less likely to over-fit, and easier to train. For comparison and validation, we test the proposed method along with three other deep learning-based HSI classification methodsnamely, stacked autoencoder (SAE), deep brief network (DBN), and 2D-CNN-based methodson three real-world HSI datasets captured by different sensors. Experimental results demonstrate that our 3D-CNN-based method outperforms these state-of-the-art methods and sets a new record.
引用
收藏
页数:21
相关论文
共 47 条
[1]  
[Anonymous], P 2015 IEEE INT C CO
[2]  
[Anonymous], 2013, IEEE T PATTERN ANAL, DOI DOI 10.1109/TPAMI.2012.59
[3]  
[Anonymous], P AMS MATH CHALL LEC
[4]  
[Anonymous], INT J PATTERN RECOGN
[5]  
[Anonymous], PROC CVPR IEEE
[6]   Classification of hyperspectral data from urban areas based on extended morphological profiles [J].
Benediktsson, JA ;
Palmason, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :480-491
[7]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[8]   Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks [J].
Chen, Yushi ;
Jiang, Hanlu ;
Li, Chunyang ;
Jia, Xiuping ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6232-6251
[9]   Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network [J].
Chen, Yushi ;
Zhao, Xing ;
Jia, Xiuping .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2381-2392
[10]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107