Box-counting dimensions of fractal interpolation surfaces derived from fractal interpolation functions

被引:37
|
作者
Feng, Zhigang [1 ,2 ]
Sun, Xiuqing [1 ]
机构
[1] Jiangsu Univ, Fac Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[2] China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Beijing 100086, Peoples R China
关键词
Affine fractal interpolation function; Variation; Fractal interpolation surface; Box-counting dimension; MINKOWSKI DIMENSION; STABILITY;
D O I
10.1016/j.jmaa.2013.10.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A construction method of Fractal Interpolation Surfaces on a rectangular domain with arbitrary interpolation nodes is introduced. The variation properties of the binary functions corresponding to this type of fractal interpolation surfaces are discussed. Based on the relationship between Box-counting dimension and variation, some results about Box-counting dimension of the fractal interpolation surfaces are given. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:416 / 425
页数:10
相关论文
共 50 条
  • [1] Fractal interpolation surfaces derived from Fractal interpolation functions
    Bouboulis, P.
    Dalla, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 919 - 936
  • [2] Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension
    Bouboulis, P.
    Dalla, Leoni
    Drakopoulos, V.
    JOURNAL OF APPROXIMATION THEORY, 2006, 141 (02) : 99 - 117
  • [3] Smooth fractal surfaces derived from bicubic rational fractal interpolation functions
    Fangxun Bao
    Xunxiang Yao
    Qinghua Sun
    Yunfeng Zhang
    Caiming Zhang
    Science China Information Sciences, 2018, 61
  • [4] Smooth fractal surfaces derived from bicubic rational fractal interpolation functions
    Bao, Fangxun
    Yao, Xunxiang
    Sun, Qinghua
    Zhang, Yunfeng
    Zhang, Caiming
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (09)
  • [5] Smooth fractal surfaces derived from bicubic rational fractal interpolation functions
    Fangxun BAO
    Xunxiang YAO
    Qinghua SUN
    Yunfeng ZHANG
    Caiming ZHANG
    Science China(Information Sciences), 2018, 61 (09) : 335 - 345
  • [6] Box-counting dimensions of generalised fractal nests
    Milicic, Sinisa
    CHAOS SOLITONS & FRACTALS, 2018, 113 : 125 - 134
  • [7] Box-counting dimension and analytic properties of hidden variable fractal interpolation functions with function contractivity factors
    Yun, CholHui
    Ri, MiGyong
    CHAOS SOLITONS & FRACTALS, 2020, 134
  • [8] CONSTRUCTION OF RECURRENT FRACTAL INTERPOLATION SURFACES WITH FUNCTION SCALING FACTORS AND ESTIMATION OF BOX-COUNTING DIMENSION ON RECTANGULAR GRIDS
    Yun, Chol-Hui
    Choi, Hui-Chol
    Hyong-Chol, O.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2015, 23 (04)
  • [9] A modified box-counting method to estimate the fractal dimensions
    Xu, Jie
    Lacidogna, G.
    INFORMATION TECHNOLOGY FOR MANUFACTURING SYSTEMS II, PTS 1-3, 2011, 58-60 : 1756 - +
  • [10] EFFICIENT BOX-COUNTING DETERMINATION OF GENERALIZED FRACTAL DIMENSIONS
    BLOCK, A
    VONBLOH, W
    SCHELLNHUBER, HJ
    PHYSICAL REVIEW A, 1990, 42 (04): : 1869 - 1874