MULTITYPE BRANCHING BROWNIAN MOTION AND TRAVELING WAVES

被引:1
|
作者
Ren, Yan-Xia [1 ]
Yang, Ting [2 ]
机构
[1] Peking Univ, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Beijing 100864, Peoples R China
基金
中国博士后科学基金;
关键词
Multitype branching Brownian motion; spine approach; additive martingale; traveling wave solution; EQUATION;
D O I
10.1239/aap/1396360111
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we study the parabolic system of equations which is closely related to a multitype branching Brownian motion. Particular attention is paid to the monotone traveling wave solutions of this system. Provided with some moment conditions, we show the existence, uniqueness, and asymptotic behaviors of such waves with speed greater than or equal to a critical value c and nonexistence of such waves with speed smaller than c.
引用
收藏
页码:217 / 240
页数:24
相关论文
共 50 条
  • [1] BRANCHING BROWNIAN MOTION IN A PERIODIC ENVIRONMENT AND UNIQUENESS OF PULSATING TRAVELING WAVES
    Ren, Yan-Xia
    Song, Renming
    Yang, Fan
    ADVANCES IN APPLIED PROBABILITY, 2023, 55 (02) : 510 - 548
  • [2] Branching Brownian motion in a periodic environment and existence of pulsating traveling waves*
    Ren, Yan-Xia
    Song, Renming
    Yang, Fan
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28 : 1 - 50
  • [3] Anomalous spreading in reducible multitype branching Brownian motion
    Belloum, Mohamed Ali
    Mallein, Bastien
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [4] Modelling a multitype branching brownian motion: Filtering of a measure-valued process
    Ceci, Claudia
    Gerardi, Anna
    ACTA APPLICANDAE MATHEMATICAE, 2006, 91 (01) : 39 - 66
  • [5] Modelling a Multitype Branching Brownian Motion: Filtering of a Measure-Valued Process
    Claudia Ceci
    Anna Gerardi
    Acta Applicandae Mathematica, 2006, 91 : 39 - 66
  • [6] TRAVELING WAVES IN INHOMOGENEOUS BRANCHING BROWNIAN MOTIONS .2.
    LALLEY, S
    SELLKE, T
    ANNALS OF PROBABILITY, 1989, 17 (01): : 116 - 127
  • [7] TRAVELING WAVES IN INHOMOGENEOUS BRANCHING BROWNIAN MOTIONS .1.
    LALLEY, S
    SELLKE, T
    ANNALS OF PROBABILITY, 1988, 16 (03): : 1051 - 1062
  • [8] Annihilating Branching Brownian Motion
    Ahlberg, Daniel
    Angel, Omer
    Kolesnik, Brett
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (13) : 10425 - 10448
  • [9] Branching Brownian Motion with Catalytic Branching at the Origin
    Bocharov, Sergey
    Harris, Simon C.
    ACTA APPLICANDAE MATHEMATICAE, 2014, 134 (01) : 201 - 228
  • [10] Hyperbolic branching Brownian motion
    Steven P. Lalley
    Tom Sellke
    Probability Theory and Related Fields, 1997, 108 : 171 - 192