Cadmium-induced subcellular accumulation of O2.- and H2O2 in pea leaves

被引:602
|
作者
Romero-Puertas, MC
Rodríguez-Serrano, M
Corpas, FJ
Gómez, M
Del Río, LA
Sandalio, LM
机构
[1] CSIC, Dept Bioquim Biol Celular & Mol Plantas, E-18080 Granada, Spain
[2] CSIC, Dept Agroecol & Protecc Vegetal, Estac Expt Zaidin, E-18080 Granada, Spain
来源
PLANT CELL AND ENVIRONMENT | 2004年 / 27卷 / 09期
关键词
cadmium; cytochemistry; histochemistry; oxidative stress; pea; reactive oxygen species; signalling;
D O I
10.1111/j.1365-3040.2004.01217.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cadmium is a toxic metal that produces disturbances in plant antioxidant defences giving rise to oxidative stress. The effect of this metal on H2O2 and O-2(.-) production was studied in leaves from pea plants growth for 2 weeks with 50 muM Cd, by histochemistry with diaminobenzidine (DAB) and nitroblue tetrazolium (NBT), respectively. The subcellular localization of these reactive oxygen species (ROS) was studied by cytochemistry with CeCl3 and Mn/DAB staining for H2O2 and O-2(.-), respectively, followed by electron microscopy observation. In leaves from pea plants grown with 50 muM CdCl2 a rise of six times in the H2O2 content took place in comparison with control plants, and the accumulation of H2O2 was observed mainly in the plasma membrane of transfer, mesophyll and epidermal cells, as well as in the tonoplast of bundle sheath cells. In mesophyll cells a small accumulation of H2O2 was observed in mitochondria and peroxisomes. Experiments with inhibitors suggested that the main source of H2O2 could be a NADPH oxidase. The subcellular localization of O-2(.-) production was demonstrated in the tonoplast of bundle sheath cells, and plasma membrane from mesophyll cells. The Cd-induced production of the ROS, H2O2 and O-2(.-), could be attributed to the phytotoxic effect of Cd, but lower levels of ROS could function as signal molecules in the induction of defence genes against Cd toxicity. Treatment of leaves from Cd-grown plants with different effectors and inhibitors showed that ROS production was regulated by different processes involving protein phosphatases, Ca2+ channels, and cGMP.
引用
收藏
页码:1122 / 1134
页数:13
相关论文
共 50 条
  • [41] Effect of NaCl stress on H2O2 metabolism in rice leaves
    Chuan Chi Lin
    Ching Huei Kao
    Plant Growth Regulation, 2000, 30 : 151 - 155
  • [42] Molecular basis of H2O2/O2.-/.OH discrimination during electrochemical activation of DyP peroxidases: The critical role of the distal residues
    Scocozza, Magali F.
    Zitare, Ulises A.
    Cancian, Pablo
    Castro, Maria A.
    Martins, Ligia O.
    Murgida, Daniel H.
    JOURNAL OF INORGANIC BIOCHEMISTRY, 2025, 264
  • [43] Regulation of plasma membrane permeability to H2O2 during adaptation to H2O2
    Antunes, Fernando
    Marinho, H. Susana
    Cyrne, Luisa
    FREE RADICAL RESEARCH, 2007, 41 : S8 - S8
  • [44] INVIVO OCULAR H2O2 NEUTRALIZATION AFTER REPEATED H2O2 EXPOSURE
    MCKENNEY, C
    ROTH, L
    SCOTT, G
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1992, 33 (04) : 1294 - 1294
  • [45] Inhibitory and enhancing effects of NO on H2O2 toxicity:: Dependence on the concentrations of NO and H2O2
    Rauen, Ursula
    Li, Tongju
    De Groot, Herbert
    FREE RADICAL RESEARCH, 2007, 41 (04) : 402 - 412
  • [46] PH AS A DETERMINANT OF H2O2 ACCUMULATION IN ORAL BACTERIAL MIXTURES
    RYAN, CS
    KLEINBERG, I
    JOURNAL OF DENTAL RESEARCH, 1995, 74 : 127 - 127
  • [47] ABA Controls H2O2 Accumulation Through the Induction of OsCATB in Rice Leaves Under Water Stress
    Ye, Nenghui
    Zhu, Guohui
    Liu, Yinggao
    Li, Yingxuan
    Zhang, Jianhua
    PLANT AND CELL PHYSIOLOGY, 2011, 52 (04) : 689 - 698
  • [48] Betacyanin accumulation in the leaves of C3 halophyte Suaeda salsa L. is induced by watering roots with H2O2
    Wang, Chang-Quan
    Chen, Min
    Wang, Bao-Shan
    PLANT SCIENCE, 2007, 172 (01) : 1 - 7
  • [49] Evaluation of antioxidant activity of phenolic fractions from the leaves and petals of dandelion in human plasma treated with H2O2 and H2O2/Fe
    Jedrejek, Dariusz
    Kontek, Bogdan
    Lis, Bernadetta
    Stochmal, Anna
    Olas, Beata
    CHEMICO-BIOLOGICAL INTERACTIONS, 2017, 262 : 29 - 37
  • [50] Preconditioning with hydrogen peroxide (H2O2) or ischemia in H2O2-induced cardiac dysfunction
    Valen, G
    Starkopf, J
    Takeshima, S
    Kullisaar, T
    Vihalemm, T
    Kengsepp, AT
    Löwbeer, C
    Vaage, J
    Zilmer, M
    FREE RADICAL RESEARCH, 1998, 29 (03) : 235 - 245